Problem set 2

- 1) Suppose there are n firms in the Cournot oligopoly model. The inverse demand function is P(Q) = 100 Q where Q is the aggregate quantity on the market. All firms are equal and face the following cost function: $c(q_i) = 2q_i$. Firms choose their quantities simultaneously.
- a. Find the Nash equilibrium
- b. Find the strategy profile where the aggregate quantity is equal to the monopoly quantity and firms produce the same quantity.
- c. Show that the strategy profile at point b) is not an equilibrium (use best responses)
- d. Show that firms prefer the strategy profile at point b) respect to the Nash equilibrium (compare profits)
- e. Let n = 2 and suppose firms can choose to produce the Nash quantity or the quantity you find in point b. No other quantities are feasible. Represent this situation as a normal form game using a payoff table.
- f. Let n = 2 and $c(q_1) = 2q_1 c(q_2) = 3q_2$ (firms have different cost functions). Find the Nash equilibrium.
- a. Each firm faces the following problem:

 $Max_{q_i} (100 - Q - 2)q_i$ where $Q = \sum_{i=1}^n q_i$

The FOC are $98 - \sum_{j \neq i} q_j - 2q_i = 0$ then the best response of firm *i* is:

$$q_i = \frac{98 - \sum_{j \neq i} q_j}{2}$$

Then in equilibrium this condition must be satisfied for every firm, i.e.

$$q_i^* = rac{98 - \sum_{j
eq i} q_j^*}{2}$$
 for every i

Note that you can rewrite these conditions as:

 $q_i^* = 98 - Q^*$ where $Q^* = \sum_{i=1}^n q_i^*$. This is enough to state that every firm produces the same quantity, i.e. $q_i^* = q_i^*$ for every *i*, *j*.

Then the FOC can be written as:

$$q_{i}^{*}=rac{98-\sum_{j
eq i}q_{i}^{*}}{2}\,\mathrm{and}\;q_{i}^{*}=rac{98}{n+1}$$

Therefore in the Nash equilibrium each firm produces a quantity of $\frac{98}{n+1}$

b. The quantity that maximizes the profit of a monopolist is given by the solution of the following problem: $Max_Q (100 - Q - 2)Q$

The FOC is 98 - 2Q = 0. Then the aggregate quantity that maximize the aggregate profits is Q = 49. Then each firm has to produce $\frac{49}{n}$.

c. Take the best response function

$$q_i = \frac{98 - \sum_{j \neq i} q_j}{2}$$

If every firm produces $\frac{49}{n}$ the level of production that maximizes the profits of firm *i* is:

$$q_i = \frac{98 - (n-1)\frac{49}{n}}{2}$$

Note that this quantity is bigger than $\frac{49}{n}$, indeed

$$\frac{98 - (n-1)\frac{49}{n}}{2} > \frac{49}{n}$$
$$98 - (n-1)\frac{49}{n} > 2 \frac{49}{n}$$
$$98 > (n+1)\frac{49}{n}$$

That is true for all $n \ge 2$.

Then if all other firms produce $\frac{49}{n}$ each, the best response of firm *i* is to produce a greater quantity. Then the strategy profile where all firms produce $\frac{49}{n}$ is not a Nash equilibrium.

d. The profit of firm *i* in the Nash equilibrium are:

$$\pi_i = \left(100 - \frac{98}{n+1} \ n-2\right) \frac{98}{n+1} = \left(98 - \frac{98}{n+1} \ n\right) \frac{98}{n+1} = \left(\frac{98}{n+1}\right)^2$$

The profit of firm *i*, when each firm produces $\frac{49}{n}$, are:

$$\hat{\pi}_i = \left(100 - \frac{49}{n}n - 2\right)\frac{49}{n} = \frac{49^2}{n}$$

Note that

$$\frac{49^2}{n} > \left(\frac{98}{n+1}\right)^2$$
$$\frac{1}{n} > \left(\frac{2}{n+1}\right)^2$$

That is true for all $n \ge 2$

Then each firm gets more profits if each one produces $\frac{49}{n}$

e. Players: Firm 1 and Firm 2

Strategies:
$$s_1 \in \left\{\frac{49}{2}, \frac{98}{3}\right\}$$
 and $s_2 \in \left\{\frac{49}{2}, \frac{98}{3}\right\}$

Payoff:

		Firm 2		
		49	98	
		2	3	
Firm 1	$\frac{49}{2}$	1200.5, 1200.5	1000.4, 1333.9	
	$\frac{\overline{98}}{3}$	1333.9, 1000.4	1067.1, 1067.1	

g.

The best response for firm 1 is

$$q_1 = \frac{100 - q_2 - 2}{2}$$

$$q_2 = \frac{100 - q_1 - 3}{2}$$

In a Nash equilibrium both must be satisfied, i.e.

$$\begin{cases} q_1^* = \frac{100 - q_2^* - 2}{2} \\ q_2^* = \frac{100 - q_1^* - 3}{2} \end{cases}$$

Solving the system we have:

 $q_1^*=33$ and $q_2^*=32$ that is the strategy profile in The Nash equilibrium

2) Consider the Bertrand duopoly model with homogeneous product. The demand function of

firm 1 is
$$q_1 = \begin{cases} 100 - p_1 \text{ if } p_1 < p_2 \\ \frac{100 - p_1}{2} \text{ if } p_1 = p_2 \\ 0 \text{ if } p_1 > p_2 \end{cases}$$
; that of firm 2 is $q_2 = \begin{cases} 100 - p_2 \text{ if } p_2 < p_1 \\ \frac{100 - p_2}{2} \text{ if } p_2 = p_1 \\ 0 \text{ if } p_2 > p_1 \end{cases}$.

The two firms are equal and face the following cost function: $c(q_i) = c \cdot q_i$ Show that the unique Nash equilibrium is $p_2 = p_1 = c$.

- 1) $p_1 > c$ and $p_2 > c$ is not an equilibrium because the firm with the higher price (zero profits) has a positive incentive to set a price a bit lower than the other (so it gets strictly positive profits).
- 2) $p_1 < c$ and $p_2 < c$ is not an equilibrium because the firm with the lower price (strictly negative profit) has a positive incentive to set a price a bit higher than the other (so it gets zero profits).
- 3) $p_1 < c$ and $p_2 > c$ (or $p_1 > c$ and $p_2 < c$) is not an equilibrium because the firm with the lower price (strictly negative profits) has a positive incentive to set a price a bit lower than the other but above c (so it gets strictly positive profits).

Therefore the only pair of prices that is a best response of each other is $p_2 = p_1 = c$.

Otherwise we look for best responses.

Consider the best response of Firm 1 to: $p_2 > c$. It is to set $p_1 = p_2 - \varepsilon$ where ε is infinitely small. $p_2 = c$. It is to set $p_1 \ge p_2$ where ε is infinitely small. $p_2 < c$. It is to set $p_1 > p_2$ Consider the best response of Firm 2 to: $p_1 > c$. It is to set $p_2 = p_1 - \varepsilon$ where ε is infinitely small. $p_1 = c$. It is to set $p_2 \ge p_1$ where ε is infinitely small. $p_1 < c$. It is to set $p_2 > p_1$

Therefore the only pair of prices that is a best response of each other is $p_2 = p_1 = c$. In the figure the best response of firm 2 (shaded area and red lines)

3) Consider the model of final offer arbitration. Find the Nash equilibrium when

a.
$$F(x) = \frac{x^2}{10000}$$
 for $0 \le x \le 100$ and $F(x) = 1$ for $x > 100$

- b. $F(x) = 0.01 \cdot x$ with $0 \le x \le 100$
 - a. To find the median you have to solve $\frac{x^2}{10000} = 0.5$ by x. $x^2 = 5000$ x = 70.7 = m

Then one condition for a NE is $\frac{w_f + w_u}{2} = 70.7$

Then we need to find $f(x) = \frac{dF(x)}{dx}$

$$f(x) = \frac{x}{5000}$$

Then the second condition is:

$$w_u - w_f = \frac{1}{\frac{m}{5000}} = \frac{5000}{70.7} = 70.7$$

We have to solve the system

$$\begin{cases} w_u - w_f = 70.7\\ \frac{w_f + w_u}{2} = 70.7 \end{cases}$$

The solution is

$$w_u \cong 106$$

 $wf \cong 35.3$

But if w_u >0 which is the solution?

We have to use Kuhn Tucker condition for constrained maximization.

b. We have to solve the system

$$\begin{cases} w_u - w_f = \frac{1}{0.01} \\ \frac{w_f + w_u}{2} = 50 \end{cases}$$

$$w_u = 100$$
$$wf = 0$$

4. Consider the Problem of the Commons. Assume that n = 3 and that v(x) = 120 - x. Compute the Nash equilibrium, the total number of goats in the Nash equilibrium and the number of goats that maximize the social welfare.

The problem of farmer 1 is

$$max_{g_1}g_1(120 - c - g_1 - g_2 - g_3)$$

Compute the FOC to find its best response, that is:

$$g_1 = \frac{(120 - c - g_2 - g_3)}{2}$$

As in Cournot model is possible to show that $g_1 = g_2 = g_3$, then we have that:

$$g_1 = g_2 = g_3 = \frac{(120 - c)}{4}$$

That is the a Nash equilibrium

The total number of goats in equilibrium is :

$$G = \frac{3(120-c)}{4}$$

The number of goats that maximizes the social welfare is the number that maximizes the aggregate profits

The problem is:

$$max_G G(120 - c - G)$$

Using the first order condition we find that:

$$G = \frac{(120-c)}{2}$$

That is smaller than in the Nash equilibrium

5. Represent by a table a traveler's dilemma game with two players. They can choose integer numbers between 1 and 4 and R=2. Find the Nash equilibrium

		Player 2			
		1	2	3	4
Player 1	1	<u>1, 1</u>	<u>3</u> , -1	3, -1	3, -1
	2	-1, <u>3</u>	2, 2	<u>4</u> , 0	4, 0
	3	-1, 3	0, <u>4</u>	3, 3	<u>5</u> , 1
	4	-1, 3	0, 4	1, <u>5</u>	4, 4

The unique Nash equilibrium is: Player 1 plays 1, Player 2 plays 1

- 6. Represent a beauty contest game with two players. They can choose integer numbers between 1 and 4 :
 - c. when p=0.5
 - d. when p=1
 - e. when p=2

In all cases find the Nash equilibria

Let 100 be the prize. When both players are at same distance from p * average, each one receives 50

P=0.5

		Player 2			
		1	2	3	4
Player 1	1	<u>50</u> , <u>50</u>	<u>100</u> , 0	<u>100</u> , 0	<u>100</u> , 0
	2	0, <u>100</u>	50, 50	<u>100</u> , 0	<u>100</u> , 0
	3	0, <u>100</u>	0, <u>100</u>	50, 50	<u>100</u> , 0
	4	0, <u>100</u>	0, <u>100</u>	0, <u>100</u>	50, 50

Unique Nash Equilibrium: Player 1 plays 1, Player 2 plays 1

p=1

		Player 2			
		1	2	3	4
Player 1	1	50, 50	50, 50	50, 50	50, 50
	2	50, 50	50, 50	50, 50	50, 50
	3	50, 50	50, 50	50, 50	50, 50
	4	50, 50	50, 50	50, 50	50, 50

All strategy combinations are Nash equilibria

p=2

		Player 2			
		1	2	3	4
Player 1	1	50, 50	0, <u>100</u>	0, <u>100</u>	0, <u>100</u>
	2	<u>100</u> , 0	50 <i>,</i> 50	0, <u>100</u>	0, <u>100</u>
	3	<u>100</u> , 0	<u>100</u> , 0	50, 50	0, <u>100</u>
	4	<u>100</u> , 0	<u>100</u> , 0	<u>100</u> , 0	<u>50</u> , <u>50</u>

Unique Nash Equilibrium: Player 1 plays 4, Player 2 plays 4