Problem set 6

1) Three oligopolists operate in a market with inverse demand function given by $P(Q)=a-Q$ where $Q=q_{1}+q_{2}+q_{3}$ and q_{i} is the quantity produced by firm i. Each firm has constant marginal cost of production, c, and no fixed cost. The firms choose their quantities as follows: (1) firm 1 chooses $q_{1}>0$; (2) firms 2 and 3 observe q_{1} and then simultaneously choose q_{2} and q_{3}. Find the subgame perfect outcome.

Solution

The problem of firm 3 is

$$
\max _{q_{3}}\left(a-q_{1}-q_{2}-q_{3}\right) q_{3}-c q_{3}
$$

The FOC is:

$$
\left(a-q_{1}-q_{2}-2 q_{3}\right)-c=0
$$

The reaction function of firm 3 is:

$$
q_{3}=\frac{\left(a-q_{1}-q_{2}-c\right)}{2}
$$

Similarly the reaction function (best responses) of firm 2 is:

$$
q_{2}=\frac{\left(a-q_{1}-q_{3}-c\right)}{2}
$$

Using symmetry $\left(q_{2}=q_{3}\right)$ we find that the Nash equilibrium of the simultaneous game between firms 2 and 3 is:

$$
q_{2}=q_{3}=\frac{\left(a-q_{1}-c\right)}{3}
$$

We go to find the optimal behaviour of firm 1.

$$
\max _{q_{1}}\left(a-q_{1}-q_{2}-q_{3}\right) q_{1}-c q_{1}
$$

But given that Firm 1 anticipates the behaviour of firms 2 and 3 its problem is:

$$
\max _{q_{1}} \frac{a-q_{1}-c}{3} q_{1}
$$

The FOC is

$$
\frac{a-2 q_{1}-c}{3}=0
$$

Then the optimal choice for firm 1 is:

$$
q_{1}=\frac{a-c}{2}
$$

Replacing q_{1} in the solution of the subgame between firms 2 and 3 we have

$$
q_{2}=q_{3}=\frac{a-c}{6}
$$

The backward induction outcome is:
$q_{1}=\frac{a-c}{2} q_{2}=q_{3}=\frac{a-c}{6}$
2) Consider the following normal form game where Player 1 chooses the row (either T or B), Player 2 chooses the column (either ror I), Player 3 chooses the table (either R or L)

Player 3

a) find all Nash equilibria in pure strategies
b) assume that player 1 moves first, then player 2 and finally player 3; every player, before to play, observes the choices of the predecessors.
a. Represent the game using the extensive form
b. Find all subgame perfect Nash equilibria
c) Assume that player 3 is not able to see the choice of player 2
a. Represent the game using the extensive form
b. Find all subgame perfect Nash equilibria

Solution
a)

Player 3

Player 1		Player 2		RPlayer 2	
		\|	r	1	r
	T	1, 1, 1	$\underline{0}, 0, \underline{0}$	$\underline{0}, \underline{0}, 0$	$0, \underline{0}, \underline{0}$
	B	$0, \underline{0}, \underline{0}$	$\underline{0}, \underline{0}, 0$	$\underline{0}, 0, \underline{0}$	$\underline{4}, \underline{4}, \underline{4}$

Two Nash equilibria: ($\mathrm{T}, \mathrm{I}, \mathrm{L}$) ($\mathrm{B}, \mathrm{r}, \mathrm{R}$)
b) Extensive form representation

Player 1

We use backward induction (in bold the best responses)

Backward induction outcome: Player 1 plays B, Player 2 plays r, Player 3 plays R
Subgame perfect Nash equilibria
i. $\quad\{(B),(I, r),(L, L, L, R)\}$

ii.	$\{(B),(I, r),(L, L, R, R)\}$
iii.	$\{(B),(I, r),(L, R, L, R)\}$
iv.	$\{(B),(I, r),(L, R, R, R)\}$

d) Extensive form representation

There are 3 subgames: the whole game, the game between players 2 and 3 after T, the game between players 2 and 3 after B

After T the subgame is:

$$
\begin{aligned}
& \text { Player } 3
\end{aligned}
$$

Two Nash equilibria: $\{I, L\}$ and $\{r, R\}$
After L the subgame is:

\[

\]

We have to look for the best choices of player 1 for each possible combination of Nash equilibria in the two subgames between players 2 and 3

1) $\{(T),(I, I),(L, L)\}$
2) $\{(L),(I, r),(L, R)\}$
3) $\{(T),(r, I),(R, L)\}$
4) $\{(L),(r, I),(R, L)\}$
5) $\{(L),(r, r),(R, R)\}$
6) Three periods sequential bargaining. Two players, 1 and 2, are bargaining over $\$ 1$ using the following bargaining procedure (alternating offers):
Period 1: Player 1 proposes to take a share s1 of the dollar, leaving 1 - s1 for player 2; Player 2 either accepts (game ends) or rejects (Play goes to period 2)
Period 2: Player 2 proposes a share s2 of the dollar for player 1, leaving 1 - s2 for player 2; Player 1 either accepts (game ends) or rejects (Play goes to period 3)
Period 3: Player 1 receives a share s of the dollar, player 2 receives $1-\mathrm{s}$.
Players discount future payoffs by factor δ per period, $0<\delta<1$.
Find the backward induction outcome and describe the subgame perfect Nash equilibrium

- The problem of player 1 in period 2 is a choice between
- to have s2 immediately or
- s one period later.

The best response of Player 1 is to accept s2
if $s 2 \geq \delta s$, otherwise reject ($s 2<\delta s$)

- The problem of Player 2 in period 2 is a choice between:
- to offer s2 = δs (player 1 accepts) and receive immediately $1-\delta s$ or
- to offer less (player 1 rejects) and receive 1 - s one period later

The best response of Player 2 is to propose
$s 2=\delta s$, because $1-\delta s>\delta(1-s)$

- The problem of player 2 in period 1 is a choice between:
- To accept s1 and receive 1 - s1 immediately
- To reject and receive $(1-\delta s)$ one period later

The best response of Player 2 in period 1 is to accept s1 if and only if $1-s 1 \geq \delta(1-\delta s)$,
i.e. $s 1 \leq 1-\delta(1-\delta s)$

- The problem of Player 1 in period 1 is a choice between:
- To offer s1 = $1-\delta(1-\delta s)$ (player 2 accepts) and receive $1-\delta(1-\delta s)$ immediately
- To offer less (player 2 rejects) and receive δ s one period later

The best response of Player 1 in period 1 is to propose s1=1- $\delta(1-\delta s)$ because
$1-\delta(1-\delta s)>\delta^{2} s$
4) Tariffs and imperfect international competition. There are two identical countries denoted by $\mathrm{i}=$ 1, 2. One homogeneous good is produced in each country by a firm, firm i in country i. A share h_{i} of this product is sold in the home market and a share e_{i} is exported in the other country. Governments choose tariffs, i.e. a tax on the import. Government of country i chooses tariff t_{i}

In country i the inverse demand function is $P_{i}\left(Q_{i}\right)=a-Q_{i}$ where $Q_{i}=h_{i}+e_{j}$.
The firm's payoff (profits) is $\pi_{i}=\left[a-h_{i}-e_{j}\right] h_{i}+\left[a-h_{j}-e_{i}\right] e_{i}-c\left[h_{i}+e_{i}\right]-t_{j} e_{i}$ where $c>0$ is the marginal cost. The government's payoff is $W_{i}=0.5 Q_{i}^{2}+\pi_{i}+t_{i} e_{j}$
Timing: Governments simultaneously choose tariffs (t_{1}, t_{2}); Firms observe (t_{1}, t_{2}) and simultaneously choose quantities $\left(h_{1}, e_{1}\right)\left(h_{2}, e_{2}\right)$.
Find the backward induction outcome and describe the subgame perfect Nash equilibrium
(Hint: suppose that governments have chosen tariffs $\left(t_{1}, t_{2}\right)$ and find the optimal behaviour of firms as function of $\left(t_{1}, t_{2}\right)$. Assume that governments correctly predict the optimal behaviour of firms for each possible combination of (t_{1}, t_{2}) and find the optimal tariff rates)

We suppose that governments have chosen tariffs $\left(t_{1}, t_{2}\right)$ and we find the optimal behaviour of firms as function of $\left(t_{1}, t_{2}\right)$.
$\operatorname{Max}_{(h 1, e 1)} \pi_{1}$
where
$\pi_{1}=\left[a-h_{1}-e_{2}\right] h_{1}+\left[a-h_{2}-e_{1}\right] e_{1}-c\left[h_{1}+e_{1}\right]-t_{2} e_{1}$

Firm 1's FOCs:
$\left[a-2 h_{1}-e_{2}\right]-c=0$
$\left[a-h_{2}-2 e_{1}\right]-c-t_{2}=0$
\rightarrow
$h_{1}=\left(a-e_{2}-c\right) / 2$
$e_{1}=\left(a-h_{2}-c-t_{2}\right) / 2$
For Firm 2:
$\operatorname{Max}_{(h 2, e 2)} \pi_{2}$
where
$\pi_{2}=\left[a-h_{2}-e_{1}\right] h_{2}+\left[a-h_{1}-e_{2}\right] e_{2}-c\left[h_{2}+e_{2}\right]-t_{1} e_{2}$

Firm 2's FOCs:
$\left[a-2 h_{2}-e_{1}\right]-c=0$
$\left[a-h_{1}-2 e_{2}\right]-c-t_{1}=0$
\rightarrow
$h_{2}=\left(a-e_{1}-c\right) / 2$
$e_{2}=\left(a-h_{1}-c-t_{1}\right) / 2$

We have to solve a system of 4 equations in 4 unknowns:

1. $h_{1}=\left(a-e_{2}-c\right) / 2$
2. $e_{1}=\left(a-h_{2}-c-t_{2}\right) / 2$
3. $h_{2}=\left(a-e_{1}-c\right) / 2$
4. $e_{2}=\left(a-h_{1}-c-t_{1}\right) / 2$

Solutions:

1. $h_{1}{ }^{*}=\left(a-c+t_{1}\right) / 3$
2. $e_{1}{ }^{*}=\left(a-c-2 t_{2}\right) / 3$
3. $h_{2}{ }^{*}=\left(a-c+t_{2}\right) / 3$
4. $e_{2}{ }^{*}=\left(a-c-2 t_{1}\right) / 3$

We assume that governments correctly predict the optimal behaviour of firms for each possible combination of $\left(t_{1}, t_{2}\right)$ and we find the optimal tariff rates.

The problem of country 1's government is:
$\operatorname{Max}_{(t 1)} W_{1}=0.5\left(Q_{1}{ }^{*}\right)^{2}+\pi_{1}{ }^{*}+t_{1} e_{1}{ }^{*}$
where

$$
\begin{aligned}
Q_{1}{ }^{*} & =h_{1}{ }^{*}+e_{2}^{*}=\left(a-c+t_{1}\right) / 3+\left(a-c-2 t_{1}\right) / 3 \\
& =\left(2 a-2 c-t_{1}\right) / 3 \\
\pi_{1}^{*}= & {\left[a-h_{1}^{*}-e_{2}^{*}\right] h_{1}^{*}+\left[a-h_{2}^{*}-e_{1}^{*}\right] e_{1}^{*}-c\left[h_{1}^{*}+e_{1}^{*}\right]-t_{2} e_{1}^{*} }
\end{aligned}
$$

Using algebra:
$W_{1}=\left(2(a-c)-t_{1}\right)^{2} / 18+\left(a-c+t_{1}\right)^{2} / 9+\left(a-c-2 t_{2}\right)^{2} / 9+t_{1}\left(a-c-2 t_{1}\right) / 3$

Similarly we can write the problem of country 2's government
We compute the governments' FOCs and we find:
$\mathrm{t}_{1}{ }^{*}=(\mathrm{a}-\mathrm{c}) / 3 \quad \mathrm{t}_{2}{ }^{*}=(\mathrm{a}-\mathrm{c}) / 3$

Then
Firm 1 will produce:
$\mathrm{h}_{1}{ }^{*}=4(\mathrm{a}-\mathrm{c}) / 9 \quad \mathrm{e}_{1}{ }^{*}=(\mathrm{a}-\mathrm{c}) / 9$
Firm 2 will produce:
$h_{2}{ }^{*}=4(a-c) / 9 \quad e_{2}{ }^{*}=(a-c) / 9$

Backward Induction outcome
$\begin{array}{ll}\mathrm{t}_{1}{ }^{*}=(\mathrm{a}-\mathrm{c}) / 3 & \mathrm{t}_{2}{ }^{*}=(\mathrm{a}-\mathrm{c}) / 3 \\ \mathrm{~h}_{1}{ }^{*}=4(\mathrm{a}-\mathrm{c}) / 9 & \mathrm{e}_{1}{ }^{*}=(\mathrm{a}-\mathrm{c}) / 9 \\ \mathrm{~h}_{2}{ }^{*}=4(\mathrm{a}-\mathrm{c}) / 9 & \mathrm{e}_{2}{ }^{*}=(\mathrm{a}-\mathrm{c}) / 9\end{array}$

Subgame Perfect Nash Equilibrium (SPNE):

Note:

One info set for governments
infinite number of info set for firms, i.e. each possible combination of $t_{1} t_{2}$
$\mathrm{t}_{1}{ }^{*}=(\mathrm{a}-\mathrm{c}) / 3 \quad \mathrm{t}_{2}{ }^{*}=(\mathrm{a}-\mathrm{c}) / 3$
$h_{1}{ }^{*}=\left(a-c+t_{1}\right) / 3$
$e_{1}{ }^{*}=\left(a-c-2 t_{2}\right) / 3$
$h_{2}{ }^{*}=\left(a-c+t_{2}\right) / 3$
$e_{2}{ }^{*}=\left(a-c-2 t_{1}\right) / 3$

