Università di Trieste, Dipartimento di Matematica e Geoscienze Esame di Analisi 3 mod. A (6 CFU - LT in Matematica) Trieste, 11 febbraio 2014

Esercizio 1. Si consideri C([0,1]), lo spazio delle funzioni continue su [0,1] con la norma $||f|| = \sup_{x \in [0,1]} |f(x)|$. Sia Φ la funzione $\Phi : C([0,1]) \to \mathbb{R}$ così definita

 $\Phi(f) = \int_0^1 f^2(x) \, dx.$

- i) Si dica se Φ è lineare.
- ii) Si dica se Φ è continua.
- iii) Detto φ un elemento di C([0,1]) con norma 1, si calcoli $\frac{\partial \Phi}{\partial \varphi}(f)$.

Esercizio 2. Si consideri la serie

$$\sum_{n=1}^{+\infty} \frac{1}{x^n \sqrt{n}} \sin \frac{1}{x^2 \sqrt{n}}.$$

- i) Si dica se e dove converge puntualmente.
- ii) Si dica se sull'insieme $[2, +\infty[$ la convergenza è anche uniforme.

Esercizio 3. Sia $F: \mathbb{R}^3 \to \mathbb{R}^2$,

$$F(x, y, z) = (x^2 + y^2 - z, x + y + z).$$

Sia $\Gamma = \{(x, y, z) \in \mathbb{R}^3 : F(x, y, z) = (0, 0)\}.$

- i) Si provi che Γ è compatto.
- ii) Si dica in quali punti Γ è localmente grafico di una funzione da un intervallo di $\mathbb R$ in $\mathbb R^2.$
- iii) Sia $\varphi: \mathbb{R}^3 \to \mathbb{R}$, $\varphi(x,y,z) = z$. Si determini $\max_{(x,y,z) \in \Gamma} \varphi$ e $\min_{(x,y,z) \in \Gamma} \varphi$ (sugg.: può essere utile il teorema dei moltiplicatori di Lagrange).

Esercizio 4. Si consideri l'equazione differenziale

$$u' + (u^3 - u)\cos t = 0$$

- i) Si determini la soluzione tale che u(0) = 1.
- ii) Si determini la soluzione tale che u(0) = 2.
- ii) Si provi che la soluzione tale che $u(0) \in]0,1[$ ha infiniti punti di massimo e di minimo locale.