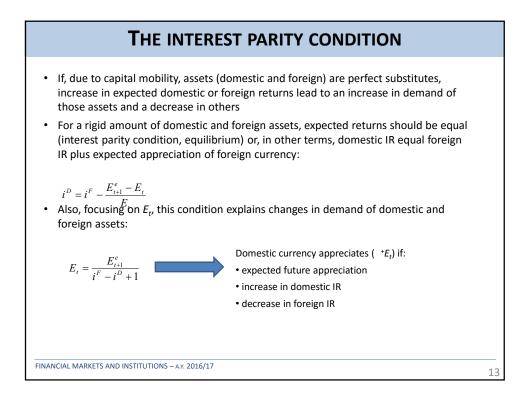
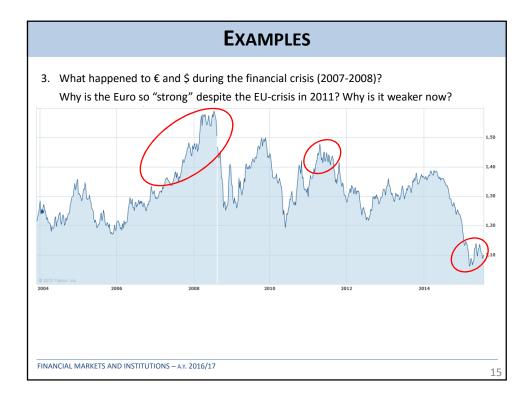
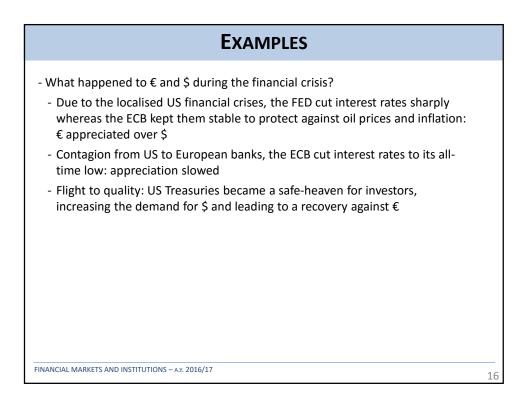
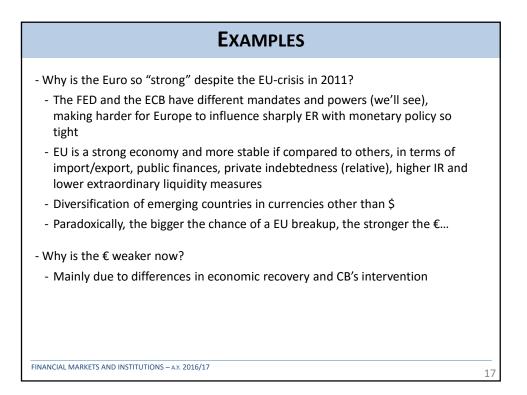

THEORIES OF ER: LONG RUN	
Theory of purchasing power parity (PPP)	
 Law of one price: two countries producing the same good with negligible transportation costs and trade barriers should price them at the same level 	
 ER between two currencies change to reflect changes in price levels of the two related countries 	
 If price levels rise in one country, its currency depreciates and others appreciate 	
 Real ER (rate of exchange between national and foreign goods) are representative of currency's relative cheapness or expensiveness, therefore PPP predicts RER close to 1 across all currencies 	
 PPP works in the long run due to its strong hypothesis: goods are perfect substitutes, all goods can be traded internationally and transportation/trade barriers are negligible 	
FINANCIAL MARKETS AND INSTITUTIONS - A.Y. 2016/17	








THE INTEREST PARITY CONDITION	
 Frequently used relationship between IR and ER If domestic assets earn i^D and foreign assets i^F (no capital gains), comparison of earnings requires currency conversion Returns in terms of foreign currency should consider expectations over future appreciation/depreciation of domestic currency (where <i>E</i> is the usual foreign Vs. domestic ER) :	
 and foreign returns, are: Relative R^D(F) = i^D - i^F + E^e_{i+1} - E_i E_i Returns in terms of domestic currency and relative returns in terms of domestic currency, are straightforward: 	
$R^{F}(D) = i^{F} - \frac{E_{t+1}^{e} - E_{t}}{E_{t}} \to \text{Rel.} \ R^{F}(D) = i^{D} - \left(i^{F} - \frac{E_{t+1}^{e} - E_{t}}{E_{t}}\right) = i^{D} - i^{F} + \frac{E_{t+1}^{e} - E_{t}}{E_{t}} = \text{Rel.} \ R^{D}(F)$	
FINANCIAL MARKETS AND INSTITUTIONS – A.Y. 2016/17	

EXAMPLES	
 On 1st February 2013 the ER was 1.3644 \$/€. If on 1st April the € depreciated by 6% what was the new ER? What in terms of €/\$? IR in Europe are 4% and in the US are 2.5%. Due to the interest parity condition, what is expected to happen to the rate of appreciation of the foreign currency (US) 	
1. $1.3644 \cdot (1 - 6\%) = 1.2825$ 1/1.3644 = 0.7329 $1/1.2825 = 0.7797$ $(0.7797 - 0.7329)/0.7329 = 6.38%$	
2. $i^{D} = i^{F} - \frac{E_{t+1}^{e} - E_{t}}{E_{t}} \rightarrow -\frac{E_{t+1}^{e} - E_{t}}{E_{t}} = 4\% - 2.5\% = 1.5\%$	
FINANCIAL MARKETS AND INSTITUTIONS – A.Y. 2016/17	14

	Examples
number o 1y IR in JF allowed t	R and IR can provide interesting investing opportunities and their differences convey a of trading strategies. The most common is carry-trade. PY are 0.2%, whereas in EUR are 2.5%; the investor has only 20,000 € available but is o raise other 80,000 € (1:5 leverage).
	he result of a basic carry-trade with stable ER at 133.26 yen/€ (current)? ne ER moved from 133.26 to 115 (similar to 2009-2010)?
Long: Short: Net result:	$100,000 \cdot (1+2.5\%) = 102,500 \in$ $100,000 \cdot 133.26 \cdot (1+0.2\%) = 13,352,652Y \rightarrow 13,352,652/133.26 = 100,200 \in$ $102,500 - 100,200 = 2,300 \in \rightarrow 2,300/20,000 = 11.5\% = (2.5\% - 0.2\%) \cdot 5$
Income:	$100,000 \cdot (1 + 2.5\%) = 102,500 \in$
Costs: Net result:	$100,000 \cdot 133.26 \cdot (1+0.2\%) = 13,352,652Y \rightarrow 13,352,652/115 = 116,110 \in 102,500 - 116,110 = -13,610 \in \rightarrow -13,610/20,000 = -68\%$
INANCIAL MARKET	TS AND INSTITUTIONS – A.Y. 2016/17