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  Abstract   This part introduces the reader to the understanding of fl uid motion in 
terms of vortex dynamics. First the conceptual background on vortex dynamics is 
drawn, developing an intuition why most fl uid phenomena involve vortices and why 
they are so relevant. Then the reader is accompanied along the life of vortices: 
where they come from, why they form as vortices, their interaction with other vor-
tices, up to the fi nal dissipation. During this, vortices reveal to have a major infl u-
ence on the wall shear stress along nearby tissues, and the process of vortex formation 
is associated to the development of forces on surrounding boundaries. Finally, an 
account is worthy of turbulence in terms of vorticity.      

    2.1   Def nitions 

 Vortices are fundamental performers in fl uid mechanics and they develop in almost 
every realization of fl uid motion (as extensively shown in the beautiful book by 
Lugt  1983  ) . The presence of vortices dominates the corresponding fl uid dynamics 
and the associated energetic phenomena. Vortices that develop in the large vessels 
of the cardiovascular systems play a fundamental role in the normal physiology 
and bring about the proper balance between blood motion and stresses on the sur-
rounding tissues. 

 The fl uid velocity is commonly assumed as the principal quantity describing 
fl uid motion. However, velocity is not able to evidence the underlying dynamical 
structure of a fl ow fi eld, like stresses, mixing, or turbulence, that depend on velocity 
gradients. The weakness of a description based on velocity alone is particularly 
critical when the fl uid motion features the presence of vortex structures. In general, 
 vorticity  is the preferable fundamental quantity for the analysis of incompressible 
fl uid dynamics. Vorticity, which represents the local rotation rate of fl uid particles, 
allows emphasizing the structure that hides behind the fl ow fi eld; it also represents 
a complete description of the fl ow and allows recovering the whole velocity fi eld. 
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 In mathematical terms, the vorticity is a vector, indicated with   w  ( t , x ) and defi ned 
as the  curl  is of the velocity fi eld  u ( t , x ), normally expressed as the internal product 
between the  nabla  operator and the velocity fi eld

     ( , ) Ñ= ×t x uw    (2.1)  

that in Cartesian coordinates components reads
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 The interpretation of vorticity is particularly intuitive in a two-dimensional fl ow 
fi eld, when only the  x  and  y  components of the velocity fi eld exist. In this case vor-
ticity has only the component  z , perpendicular to the plane of motion,   w  = ∂u  

 y 
 / ∂x  − 

 ∂u  
 x 
 / ∂y , and physically corresponds to (twice) the local angular velocity of a fl uid 

particle. In fact, a positive vorticity corresponds to a vertical velocity,  u  
 y 
 , increasing 

horizontally, along  x , and a horizontal velocity  u  
 x 
 , decreasing vertically. It is easy to 

understand, see Fig.  2.1  (leftmost sketch), that this type of velocity differences about 
a point represents a rotational motion (Panton  2005 , Chap. 3).  

Vorticity at a point

y

x

Vortex

Shear layer

Boundary layer

  Fig. 2.1    Vorticity corresponds to the local rotation of a fl uid particle. The spatial distribution of 
vorticity gives rise to different fl ow structures. An accumulation of vorticity in a compact region 
corresponds to a vortex; an elongated distribution of vorticity corresponds to a shear layer that, 
when it is adjacent to the wall, is a boundary layer       
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 The relevance of vorticity is not limited to local rotation. The spatial distribution 
of vorticity gives rise to different possible fl uid structures; that is why vorticity is 
commonly considered the skeleton of the fl ow fi eld and the fundamental quantity to 
defi ne the fl ow structure. A  vortex  can be loosely described as a fl uid structure that 
possesses circular or swirling motion; it actually is a region of compact vorticity, a 
circulatory motion surrounds a region where vorticity has accumulated. In addition 
to vortices, the vorticity map allows recognition of any basic fl ow structure. A shear 
layer, that is an elongated layer of friction between streams with differential motion, 
is actually a layer of vorticity, a  vortex layer . The boundary layer discussed in the 
previous chapter is a vortex layer adjacent to the wall that develops because of the 
velocity difference between the outer fl ow and the fl uid attached to the wall for 
viscous adherence. The correspondences between velocity and vorticity distribu-
tions are sketched in Fig.  2.1 . The intensity of a vortex is normally measured by its 
 circulation , normally indicated with   G  , that is the integral of the velocity along a 
closed circuit surrounding the vortex, and is equivalent to the sum of all the vorticity 
(mathematically, the integral) within the vortex area contained inside the circuit. 
The intensity of a vortex layer is measured by the difference of velocity, the  velocity 
jump  D u , between the fl ow above and below the layer, equivalent, again, to the sum 
of the vorticity (mathematically, the line integral) across the layer. Vortices and 
vortex-layers are the fundamental vorticity structure in fl ow fi elds. Their different 
three-dimensional arrangements and combinations give rise to the complexities of 
all evolving fl ows. 

 The signifi cance of vorticity can be best appreciated by the decomposition, due 
to Helmholtz and Stokes (Panton  2005 , Chap. 17), of the complete velocity fi eld 
into two distinct contributions: a rotational component  u  

 rot 
  that accounts for the 

whole vorticity in the fl ow fi eld, and one  irrotational  component  u  
 irr 

  that is indepen-
dent from the vorticity content

     
= +u u urot irr    (2.3)   

 This decomposition allows building an easier path to the intuitive understanding 
of the physical phenomena concurring in a complex fl ow fi eld. 

 The irrotational component of the velocity fi eld is a particularly simple fi eld, in 
incompressible fl ows. It will be shown below that it follows from the conservation 
of mass only (continuity constraint), and does not involves the equation of motion. 
The irrotational fl ow helps to satisfy the instantaneous balance of mass without any 
evolutionary mechanism, without fl uid dynamics, only kinematic congruence. 
A fl ow without vorticity thus gives rise to an irrotational velocity fi eld only, and does 
not depend on the balance of momentum. When required, the equation of motion 
can be then employed to derive the pressure distribution from the velocity. In the 
case of irrotational fl ow, this can be performed with the simple Bernoulli equation 
for an ideal fl ow because energy dissipation is absent in an irrotational fl ow. In fact, 
the viscous term of the Navier-Stokes Eq.   1.14    , Ñ 2  u , which can be written for an 
incompressible fl ow as Ñ  ×  w  , is identically zero for a fl ow without vorticity .  
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 These considerations on the trivial character of the irrotational component of the 
fl ow stem, mathematically, from the fact that any irrotational vector fi eld can be 
expressed as the gradient of a scalar fi eld, the so-called potential   j  , as  u  

 irr 
   =  Ñ  j  . In 

an incompressible fl ow, the continuity Eq.   1.5     applied to such a gradient fi eld 
becomes the well-known Laplace equation for the fl ow potential, Ñ 2   j  =  0. This is a 
linear equation whose solutions are easily obtained by several methods based on the 
values at the boundaries. As a further property, given the linearity of the Laplace 
equation, the irrotational velocity component can be expressed as a direct superpo-
sition of several elementary irrotational fl ows. 

 The velocity decomposition is the key tool to recognize the presence and the role 
of vortices in a fl ow. A vortex, as said, is a region where vorticity has accumulated; 
 a vortex is not necessarily a region exhibiting circulatory motion . It may appear as 
such or the circulatory pattern may remain hidden behind an irrotational contribu-
tion that covers its rotary features. The velocity fi eld corresponding to an isolated 
vortex is purely rotational; its streamlines, shown in Fig.  2.2  (left), rotate about the 
vortex and describe a circulatory motion. When an irrotational contribution adds on 
top of the same vortex fl ow, it may modify the apparent vortex signature in terms of 
streamlines. To explain this point, let us consider the same vortex of Fig.  2.2  (left) 
with an additional uniform fl ow, a rigid translational motion from top to bottom that 
is evidently an irrotational component and does not affect the value of vorticity, of 
shear rate anywhere. The resulting fl ow fi elds are shown in Fig.  2.2  for increasing 
values of the uniform motion (central and rightmost panels). The three fi elds of 
Fig.  2.2  present exactly the same vortex, the same gradients of velocity at all points; 
nevertheless from a superfi cial qualitative view in terms of streamlines the underly-
ing vortex may not be equally recognizable.  

 Fluid dynamics phenomena related to evolutionary dynamics, friction, dissipa-
tion, forces, boundary layer, vortex formation etc., are dominated by the rotational 
part of the velocity fi eld, while the irrotational contribution may have a role in terms 

  Fig. 2.2    A vortex is a region where vorticity has accumulated; it is not necessarily a region exhib-
iting circulatory motion. A fl ow made of a vortex only is made of circular streamlines ( left panel ). 
The streamlines are modifi ed when a uniform vertical fl ow of moderate ( centre ) ad high intensity 
( right panel ) is added. In the three panels the vortex is unchanged, and so is shear in the fl ow       
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of transport and mass conservation only. Therefore, a fl ow fi eld can be evaluated 
from the dynamics of the vorticity, plus an irrotational contribution to adjust mass 
conservation. This is why vorticity, and vortices in which vorticity organizes, are the 
fundamental elements of the fl ow: the skeleton and the sinews of fl uid motion 
(Moffat et al.  1994  ) .  

    2.2   Dynamics of Vorticity 

 The vorticity is the fundamental quantity that describes a fl uid fl ow. From the 
knowledge of the vorticity fi eld only, the entire fl ow fi eld inside a given geometry 
can be reconstructed (technically, by inversion of Eq.  2.1 ). It is therefore tempting 
to analyze the dynamics of a fl uid motion following the dynamics of the vorticity 
itself. This is often useful because vorticity occupies only a small fraction of the 
fl ow fi eld, and takes standard shapes that allow an immediate characterization of the 
whole fl ow fi eld. 

 The vorticity fi eld has the further simplifying property that it obeys the same 
constraint of the velocity in an incompressible fl uid previously expressed in Sect. 
  1.2     and Eq.   1.4    . Mathematically, vorticity is a fi eld with zero divergence (simply 
because the divergence of a curl is zero by mathematical defi nition)

     · 0Ñ =w    (2.4)   

 This means that the vorticity fi eld cannot take arbitrary geometric shapes. 
Therefore vorticity typically develops in terms of vortex tubes (whose associated 
velocity circulates around the tube) or of vortex layers (associated with a difference 
of velocity, a shear rate, across the layer). Moreover, the total vorticity contained 
inside a vortex tube is conserved like the discharge in a tube of fl ow: a vortex tube 
cannot terminate abruptly, and must either be a closed ring or terminate by spread-
ing into a vortex layer. 

 Vorticity is an evolving fi eld that follows deterministic evolutionary laws. Their 
mathematical expression can be immediately derived from the conservation of 
momentum, the Navier-Stokes Eq.   1.14    , rearranged in terms of vorticity. By taking 
the curl of the Navier-Stokes equation, the  vorticity equation  is obtained (Panton 
 2005 , Sect. 13.3)

     
2· ·Ñ Ñ Ñ+ = +∂ ν

∂
u u

t
w w w w    (2.5)  

that expresses the law of motion in terms of vorticity. Despite the apparent mathe-
matical complexity, the simple qualitative inspection of this equation permits to 
extract some important concepts regarding vortex dynamics. For example, it can be 
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immediately recognized that the vorticity equation does not contain the pressure 
(or any conservative force like gravity). In fact, the distribution of pressure has no 
direct infl uence on vortex dynamics; on the contrary, however, pressure strongly 
depends on vorticity that rules friction and energy losses. 

 A fi rst property of the vorticity evolution is that if vorticity is zero at one instant 
it remains zero afterward. This is seen by inspection of Eq.  2.5  where all terms are 
identically zero when vorticity is zero, and vorticity cannot change in time. Given 
that vorticity cannot be created inside the fl uid, thus it can only be generated at the 
interface between the fl uid and the boundary. This apparently simple fact is a funda-
mental element for the study of vortex dynamics: in incompressible fl ows vorticity 
does not appear spontaneously within the fl uid,  the only place where vorticity can 
be created is at the boundary between fl uid and tissue . Indeed, the issue of the gen-
eration of vorticity, and vortex formation in particular, is a key one and it will cover 
several of the following chapters. 

 After vorticity is generated, it is subjected to few possible evolutionary phenom-
ena. The primary one is that vorticity is transported with the fl ow as if it were a 
passive tracer (although not effectively passive, because velocity is related to vortic-
ity itself). This is represented by the two terms on the left hand side of ( 2.5 ) that 
simply describe the variation of vorticity over a particle moving with the fl ow. The 
fi rst term is the time variation of vorticity at the fi xed position crossed by the parti-
cle; the second term gives an increase of vorticity when a particle points in a direc-
tion along which vorticity grows (i.e., when velocity is aligned with a positive 
gradient of vorticity). They take a form analogous to, for example, the fi rst two 
terms in Eqs.   1.11     or   1.14    , describing the acceleration on a moving particle. 
Therefore, vorticity moves with the local fl uid velocity, like a tracer, and can further 
change its value in virtue of two additional phenomena. 

 The fi rst, corresponding to the fi rst term on the right hand side of ( 2.5 ), repre-
sents the phenomenon of increase of vorticity by  vortex stretching . Consider a small 
cylinder of fl uid along whose axis the velocity increases, thus velocity is lower at 
the base and higher at the cylinder top; as time proceeds, the cylinder elongates, it 
is stretched by the velocity gradient (and shrunk in the transversal direction for the 
conservation of mass). Well, the vorticity vector behaves in the identical manner as 
material fl uid, when fl uid is stretched the vorticity vector is stretched as well and the 
vorticity value increases (Batchelor  1967 , Sect. 5.2). This term represents the 
stretching and turning of vortex lines (Panton  2005 , Sect. 13.5) as if they were lines 
of fl uid. A further important aspect of this term is that it is exactly zero in a two-
dimensional fl ow. In a two-dimensional fl ow, the vorticity is perpendicular to the 
plane of motion and there is no velocity gradient out of plane: vorticity stretching is 
intrinsically a three-dimensional effect. 

 Before turning the attention to the last term containing the viscous effects, let us 
recapitulate the dynamics of vorticity in the absence of viscous effects. First, an ele-
ment of fl uid that contains no vorticity remains without vorticity afterward. This is 
the fi rst of the three Helmholtz’s laws for inviscid fl ow (Panton  2005 , Sect. 13.9). 
Then, the vorticity is a vector that behaves like a small string element of fl uid. 
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It moves with the fl ow and it is stretched and tilted with it. This is essentially the 
second Helmholtz’s law. The third law follows from the fact that vorticity is a fi eld 
with zero divergence and the total vorticity contained inside a vortex tube (or a vor-
tex fi lament, when it is thin enough) is conserved along the fi lament while it moves 
with the fl ow. 

 The picture becomes extremely simple and intuitive in a two-dimensional fl ow, 
or in a motion that is locally approximately two-dimensional. In this case, the vor-
ticity vector has a unique nonzero component perpendicular to the plane of motion, 
therefore it loses its vector character and can be considered as a scalar. Stretching is 
absent and vorticity is simply transported with the fl ow. The value of vorticity is 
stuck onto the individual fl uid particles; vorticity simply accumulates into vortex 
patches, redistributes into vortex layer, accordingly to the motion of fl uid particles. 

 The last, viscous term in the vorticity Eq.  2.5  introduces the effects of friction 
and energy dissipation in terms of vorticity. The action of viscosity on vorticity 
introduces a phenomenon analogous to that of heat diffusion or diffusion of a tracer 
like ink or smoke (Panton  2005 , Sect. 13.4). The distribution of vorticity is smoothed 
out by viscosity; a sharp vortex reduces progressively its local strength while it wid-
ens its size in a way that the total vorticity is conserved. In general, the diffusion 
process is of a simple interpretation. Like in any diffusive process, the rate of diffu-
sion is higher in presence of sharp vorticity gradients, therefore the magnitude of 
viscous dissipation become increasingly relevant where vorticity presents changes 
over short distances. This leads to the most important aspect of energy losses in fl uid 
motion:  viscous dissipation is most effective at small scales . The vector property of 
viscous diffusion is evidenced when it produces the annihilation of close patches of 
opposite sign vorticity. This has a peculiar consequence in three-dimensions. When 
two portions of vortex fi laments get in contact, the opposite-sign vorticity locally 
annihilates; this accompanies the reconnection of the cropped, oppositely pointing 
vortex lines (that cannot terminate into the fl ow). The viscous reconnection phe-
nomenon is the underlying mechanism leading to topological changes, metamor-
phoses of three-dimensional vortex structures, and increased dissipation by 
turbulence (see Sects.  2.7  and  2.8 ). 

 In summary, the dynamics of vorticity is made by its transport with the fl uid ele-
ments, intensifi cation by three-dimensional straining of such fl uid elements, and 
smoothing by viscous diffusion. A dynamics that sees vorticity arranged into tubu-
lar and sheet-like structures ensuring a continuity of vortex lines.  

    2.3   Boundary Layer Separation 

 As said above, in incompressible fl ows, vorticity cannot be generated within the 
fl uid. Vorticity can only develop from the wall in consequence of the viscous adher-
ence between the fl uid and the bounding tissue. Vorticity is produced because of the 
no-slip condition at the interface between the fl uid and the solid surface; it then 
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progressively diffuses away from the wall through the viscous diffusion mechanism 
to produce a layer of vorticity at the boundary. The boundary layer thickness cor-
responds to the length at which the viscous diffusion penetrates into the fl ow, which 
is proportional to  √ n t  as taught from Eqs.   1.16     and   1.17    . The boundary layer was 
introduced in Sect.   1.5     as the region adjacent to the wall where the velocity rises 
from the zero value that it takes at the boundary to a fi nite value away from it. 
However, its interpretation as a vorticity layer is more intuitive for addressing vor-
tex formation processes. 

 The boundary layer has a fundamental importance in fl uid mechanics as it repre-
sents the  unique  source of vorticity in a fl ow fi eld. It can be easily verifi ed that the 
value of vorticity at the wall also corresponds to the wall shear rate and, after mul-
tiplication with viscosity, to the wall shear stress

     =wt mw    (2.6)  

therefore the wall vorticity is often employed as synonymous of wall shear rate 
(sometimes, given the constancy of viscosity, also of wall shear stress). 

 In small vessels, the thickness of the boundary layer is comparable to the diam-
eter and fi lls the entire fl ow fi eld. At such small scales, in arterioles and capillaries, 
viscous diffusion is the dominant phenomenon; vorticity smoothly diffuses into 
the whole fl ow and vortices, with rare exceptions, are absent. On the contrary, in 
large blood vessels or inside the cardiac chambers, the boundary layer often 
remains thin and is capable to penetrate for diffusion over a small fraction of the 
vessel size. Indeed, until it remains attached to the wall, it has a minor infl uence to 
the fl ow and only represents a viscous slipping cushion for the outside motion. 
However, under many circumstances, it happens that such a thin boundary layer 
detaches from the wall and is ejected into the bulk fl ow. This is the process of 
 boundary layer separation , when thin layers of intense vorticity enter into the fl ow 
and give rise to local accumulation of vorticity and eventually to the formation of 
compact vortex structures. 

 Boundary layer separation is normally a consequence of the local deceleration 
of the fl ow (Panton  2005 , Sect. 20.11; Batchelor  1967 , Sect. 5.10). The whole pro-
cess of boundary layer separation is sketched in Fig.  2.3 . When fl ow decelerates, 
the boundary layer is subjected to deceleration as well and, because of incompress-
ibility, a local stream-wise deceleration associates with a growth of the thickness at 
the same location. This tongue of vorticity is lifted and strained by the outside fl ow 
while the vorticity value at the wall below decreases. As this process progresses, 
opposite sign wall vorticity appears and a secondary boundary layer develops 
below the separating shear layer. The separation point at the wall, from where the 
separation streamline departs, corresponds to the place where vorticity is zero. The 
secondary vorticity is itself decelerated in its backward motion and is lifted up. 
Eventually, it cuts the connection between the original boundary layer and 
the separating vorticity that detaches and enters into the fl ow. It should be also 
reminded that vorticity is not a passive tracer, it is made of velocity gradients and 



292.3 Boundary Layer Separation

  Fig. 2.3    Sketch of the boundary layer separation process. The dark gray indicates layers with 
clockwise vorticity, the light gray is counter-clockwise; streamlines and velocity profi les are 
drawn. The deceleration of the fl ow produces a local thickening of the boundary layer due to mass 
conservation balance ( upper panel ). Such emerging vorticity is therefore lifted and transported 
downstream by the external fl ow (see  arrows ). A shear layer then extends away from the wall and 
produces a secondary boundary layer, with oppositely rotating vorticity ( mid panel ). The separated 
clockwise vorticity tends to roll-up while the secondary layer lifts up for the same initial mecha-
nism, because it backward motion is decelerating (see  arrows ). Eventually, the separating vortex 
layer detaches from the boundary layer and becomes an independent vortex structure       
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it represents the underlying structure of the fl ow itself. Fig.  2.3  shows the qualita-
tive velocity profi les and streamlines that develop in correspondence of the sepa-
rating vorticity fi eld.  

 Boundary layer separation is thus a consequence of the local deceleration of the 
fl ow. In other terms, separation develops in presence of an  adverse pressure gradi-
ent  (pressure growing downstream) that pushes from downstream and decelerates 
the stream. The most common way to have an adverse pressure gradient is that of a 
geometric change: a positive curvature of the wall, like an enlargement in a vessel. 
In this case, the velocity decreases, for mass conservation, kinetic energy decreases, 
and the value of pressure increases for the Bernoulli balance. Therefore, boundary 
layer separation develops behind a stenosis, or at the entrance of an aneurism. An 
extreme case of geometric change is that of a sharp edge, this is often found at the 
entrance of a side-branching vessel, and certainly on the trailing edge of the leafl ets 
of the cardiac valves. In the case of sharp edges, the fl ow deceleration is so local that 
the position of boundary layer separation is defi nitely localizable at the edge. The 
vorticity that developed on the upstream side detaches at the sharp edge and leaves 
the tissue tangentially. 

 Geometric changes are not the unique possible sources for the development of a 
fl ow deceleration. Immediately downstream of branch sucking fl uid away from a 
main vessel, the velocity reduces and an adverse pressure gradient develops. 
Similarly, boundary layer separation develops for the so-called  splash  effect, when 
a jet reaches a wall and produces high velocity streamlines that decelerate when 
they are defl ected along the wall. Finally, the local fl ow deceleration is often pro-
duced by previously separated vortices. A vortex that gets close to a wall gives rise 
to a localized increase (or reduction, depending on its circulation) of the fl ow veloc-
ity at the wall below, and a corresponding deceleration immediately downstream 
(or upstream). The vortex-induced boundary layer separation is a frequent phenom-
enon that may become particularly critical in some applications. In fact, the area of 
principal separation is often localizable and properly protected, whereas an unex-
pected separation induced downstream due to a previously separated vortex may 
occur at unexpected locations.  

    2.4   Vortex Formation 

 The separation of the boundary layer represents the starting phase of the vortex 
formation process. The featuring property of any shear layer is the difference of 
velocity between its two sides: the farther side of shear layer that detaches from the 
wall moves with a speed that is higher than the side closer to the wall. Therefore, the 
separating shear layer curves on itself and eventually rolls-up into a tight spiral 
shape. Now, during the rolling-up process, the distance between two successive 
turns of the vortex layer progressively reduces, with the closest neighboring turns at 
the center of the spiral. The viscous diffusion process smears out this tight spiraling 
structure into by a compact inner core with a smooth distribution of vorticity (Wu 
et al.  2006 , Sect. 8.1). 
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 The roll-up and the formation of an isolated vortex behind a sharp edge obstacle 
are shown in Fig.  2.4 . In the case of such a sharp geometric change the boundary 
layer separation localizes at the edge, the boundary layer from the upstream “wet-
ted” face of the obstacle leaves the edge tangentially and immediately rolls-up into 
a spiral. The vorticity viscous diffusion acts with higher strength in the tighter inner 
spiral branch and gives rise to a smooth vortex core.  

 An isolated forming vortex grows with a self-similar shape until there are no 
external disturbances that can infl uence its formation. Thus until the vortex size is 
small enough in comparison to the size of the surrounding geometry. The properties 
of the initial self-similar growth can be obtained by simple dimensional arguments. 
Assume that the bulk velocity grows proportionally to  t    a    and that separation occurs 
from an edge of internal angle   b  , such that   b   = 0 is a diaphragm and   b  =  90 is a cor-
ner. It follows that the fl ow velocity around the edge is given by  At    a    r    l - 1  where  r  is the 
distance from the edge,  A  is a dimensional coeffi cient, and   l  =  180/(360 −   b  ) (see 
for example Batchelor  1967 , Sect. 6.5; Pullin  1978 ; Saffman  1992 , Sect. 8.5). Then, 
from dimensional arguments (based on the fact that  A  and  t  are the only dimensional 
quantities available), the typical length size of the vortex increases in time as  t   n  , with 
 n =  (1  +  a  )/(2 −   l  ), and the vortex intensity, its circulation, grows like  t  2 n  − 1 . 

 These estimates allow evaluating the force acting on the surrounding walls due 
to the vortex formation, which turns out to be proportional to  t  2 n  − 2  (see Sect.  2.6 ). 
Vice versa, they allow evaluating the fl ow corresponding to a given force (or pres-
sure difference). For example, in an orifi ce with zero internal angle,   b   = 0 (  l  =  1/2), 
a fl ow time-profi le  t    a    associates with a force going like  t  (4  a   − 2)/3 ; this shows that a fl ow 
that increases faster than square root growth (  a  <  1/2) requires an unrealistic, theo-
retically infi nite, effort. 

  Fig. 2.4    Vortex formation 
from a sharp edge obstacle. 
The shear layer separates from 
the upstream “wetted” wall 
and rolls-up into a spiral. The 
tight turns in the inner part of 
the spiral spread for viscous 
diffusion into the inner core of 
the formed vortex       

[AU1]
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 This typical roll-up phenomenon can be disturbed during its development in par-
ticular when the shear layer is particularly thin. A curved shear layer is, in fact, 
subjected to an intrinsic instability that gives rise to the birth of wavy disturbance 
and the following roll-up of multiple small double spirals along the shear layer itself 
(Pullin  1978 ; Luchini and Tognaccini  2002 ; Pedrizzetti  2010  ) . This instability has 
the origin in the Kelvin-Helmholtz instability for an infi nitely thin vortex sheet 
(Batchelor  1967 , Sect. 7.1) and it is more effective the thinner the vortex layer is. 
The thickness of the shear layer is given by the boundary layer thickness prior to 
separation, as given by Eqs.   1.16     or   1.17    . In general, a separating shear layer is rela-
tively thin in large vessels, especially when it detaches in a sharp enlargement after 
a short converging section, where the boundary layer is kept attached by the spa-
tially accelerating fl ow. This is the case of the trailing edge of cardiac valves. 

 The vortex formation from a smooth surface is still described by the picture given 
above, where a few additional elements of complexity can be emphasized. First, the 
actual position of separation depends on the local fl ow structure; it cannot be prelimi-
narily identifi ed and may even change during time (Pedrizzetti  1996  ) . Furthermore, 
the separation from a smooth surface is inevitably accompanied by a more direct 
interaction between the forming vortex and the nearby wall when the viscous dissipa-
tion effects normally support the formation of smoother vortex structures. 

 One typical example of the external separation from the smooth surface of a bluff 
body is shown in Fig.  2.5  featuring the formation of oppositely rotating vortices 
from the two sides of a circular cylinder. In such an example such vortices interact 
and infl uence the opposite separation process eventually producing a sequence of 
alternating vortices known as the von Karman street that is usually found behind 
bluff bodies (Panton  2005 , Sect. 14.6). The development of alternating vortices is 
quite a common phenomenon when previously separated vortices may infl uence 
vortex formation in nearby regions. It is also present, with some differences, in 
internal fl ows when a vortex formed on one side of a vessel creates a vortex-induced 
separation on a facing wall. That, in turn, may induce a weaker further separation in 
a sort of wavy pattern extending and decaying downstream.  

  Fig. 2.5    Formation of vortices behind a circular cylinder. Oppositely rotating vortices separate 
from the two sides of the body in an alternating sequence. The previously separated clockwise 
vortex detached from the upper wall translated downstream, a counter-clockwise vortex has been 
formed from the lower wall, and a novel clockwise vortex is under formation from the wall above       

[AU1]
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 The internal separation, with the following formation of a vortex inside of a ves-
sel is in general a smoother phenomenon, because the presence of confi ning walls 
does not allow vortices to grow into large structures, keeps vortices more constrained 
within smaller scales, and is more infl uenced by viscous diffusion. Nevertheless, the 
presence of a vortex inside a vessel may change the entire fl ow. It has a blocking 
effect that locally deviates the streamlines modifying the wall shear stress distribu-
tion, possibly producing further separations. It changes the unsteady pressure drop, 
and in a branching duct it may affect the relative fl ows division in the daughter ves-
sels. An example is given in Fig.  2.6  that reports the vortex formation in the bulb of 
a carotid bifurcation. During the systolic acceleration, the boundary layer separates 
tangentially from the common carotid artery and develops a smooth roll-up within 
the bulb close to the nearby wall. During deceleration, the formed vortex locally 
affects the wall shear stress inside the bulb with multiple opposite sign wall  vorticity. 

  Fig. 2.6    Formation of vortices at a carotid bifurcation. The accelerating systolic fl ow ( upper 
panel , at peak systole) leads to a smooth boundary layer separation at the carotid bulb. After the 
peak ( lower panel ) the vortex just formed at the bulb either interacts with the bulb boundary layer 
creating multiple small vortices, and gives rise to a vortex-induced secondary separation in the 
oppositely facing wall of the internal carotid artery. The same phenomena in a much weaker ver-
sion are noticeable also on the opposite side at the entrance in the external carotid artery       

[AU1]
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It has a blocking effect that deviates the streamlines at the entrance of the internal 
carotid artery into a faster jet. It produces secondary vortex-induced separation 
inside the internal carotid that eventually (not shown in the picture) gives a second-
ary vortex formation and a further small separation little downstream.  

 A general analysis of the vortex formation process can be outlined when the fl ow 
enters from a small vessel into a large chamber forming a jet whose head is the 
forming vortex. Here, after the very initial roll-up phase, a measure of the length of 
such a jet is given by the product of  Vt , where  V  is the velocity at the opening and  t  
is the time. In this case it is enlightening to defi ne a dimensionless  formation time , 
 FT , introduced by Gharib et al. in  1998 , as the ratio of the jet length with respect to 
the diameter of the opening  D 

     
×= V t

FT
D    (2.7)   

 The formation time represents a dimensionless number that characterizes the pro-
gression of vortex formation. As such, it allows the unitary description of the vortex 
formation processes as they occur under different conditions. In reality, the defi ni-
tion of formation time has a more profound physical meaning (Dabiri  2009  ) . The 
separating shear layer has a strength given by the jump of velocity between its two 
sides, given approximately by  V , and translates downstream with a velocity that is 
again proportional to  V , thus it feeds the circulation   G   of the forming vortex at a rate 
 d G  / dt  »  V  2 . The formation time thus also represents the dimensionless measure of 
the vortex strength, the circulation   G  , normalized with  VD . The defi nition ( 2.7 ) can 
be extended to the case when either  V  or  D  vary during time, by integration of the 
ratio  V / D  during the period of vortex formation. 

 The generality of the formation time concept permits to uncover general proper-
ties of the vortex formation that are common to the different cases. These, which do 
not appear in the simple description of vortex formation given above, will be 
revealed in the next chapter.  

    2.5   Three-Dimensional Vortex Formation 

 The vortex formation process described in the previous chapter is given in terms of 
two-dimensional pictures. It allows an immediate and intuitive understanding of the 
fundamental phenomenon. Actually, the initial phase of any vortex formation pro-
cess is, with rare exceptions, always two-dimensional and the three-dimensional 
infl uence enters into play at some later stages. 

 The two-dimensional description implicitly treats the vorticity as a scalar quan-
tity; this is a common practice because vorticity vector has the unique component 
that is perpendicular to the two-dimensional plane of motion. On the opposite, in 
order to understand the three-dimensional features of vortex formation, it must be 
reminded that vorticity is a three-dimensional vector. In particular, that vorticity is a 
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solenoidal vector fi eld, with zero divergence as dictated by the condition ( 2.4 ). 
It means that vorticity behaves like an incompressible fl ow:  vortex lines , lines every-
where tangent to the vorticity vector, must be continuous and cannot originate or 
terminate in the fl ow. In a viscous fl ow they are always closed lines, although some-
time complicated. 

 A consequence of the continuity of vortex lines is the concept of  vortex tube , 
sometime called  vortex fi lament  when the tube is thin enough. A vortex tube is a 
thick collection of vortex lines, a tube whose lateral surface is made of vortex lines. 
The solenoidal nature of vorticity imposes that a vortex tube typically maintains its 
individuality during fl ow evolution. It is transported by the local fl ow, deformed and 
stretched by the velocity gradients, and enlarges because of vorticity diffusion, 
while it maintains its individuality. There are, however, situations when a vortex 
tube must abandon its individual life. When a tube approaches another tube, the 
nearby vortex lines belonging to different tubes begin to wrap one around the other, 
with a strong local stretching that is ultimately smoothed out by viscosity. In such 
“close encounters” a tube may fuse with another tube, fi lament, or vortex lines. 

 Another concept that enters in three-dimensional vortex dynamics is that of  self-
induced velocity . Let us remind that a two-dimensional vortex is actually a rectilin-
ear vortex tube that does not vary along the third direction; the corresponding 
velocity fi eld is a rotation on and around the tube. A three-dimensional vortex tube, 
in general, is not rectilinear and presents a curvature that may change along its 
length. Well, because of the relation between velocity and vorticity, a curved vortex 
tube corresponds to a velocity fi eld made of a rotation around the tube plus a transla-
tion, or self-induced velocity, of the tube itself. 

 This is easily visualized: assume that the rotation velocity around the curved 
vortex tube is such that the velocity is externally upward and internally downward; 
this means that every small portion in the curved tube also pushes downward the 
nearby elements (that are in the internal side with respect to the tangent), with an 
overall result of a downward translation. The self-induced velocity of a curved vor-
tex fi lament is (Saffman  1992 , Sect. 11.1) proportional to the vortex circulation   G  , 
its curvature 1/ R , where  R  is the radius of curvature, and also weakly infl uenced by 
the ratio  R / c  where  c  is transversal size of tube. In formulae, the velocity has an 
intensity   G  /4  p R  log( R / c ) (remind that the logarithm is a very slowly growing func-
tion) and is directed perpendicular to the plane that locally contains the fi lament. 
Therefore the tighter is the curve the higher is the self-induced velocity, with the 
additional element that thin fi laments are some time faster than fat ones. 

 With these concepts in mind we can consider and describe vortex formation in 
three-dimensional fl ows. 

 The simplest case of three-dimensional vortex formation is that from a circular 
orifi ce, in that case the forming vortex tube has the shape of a ring. Vortex rings are 
well known objects of fl uid dynamics (Shariff and Leonard  1992  )  that are easily gener-
ated using a piston-cylinder apparatus. A vortex ring is a stable vortex structure, it has 
an axial symmetric and vortices with a shape close to a ring also tend to the axisym-
metric shape by an internal homogenization. Because of their stability, vortex rings are 
often encountered in nature, including when puffi ng smoke out of the mouth. 
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 Figure  2.7  shows one instant, corresponding to a formation time equal to 3, dur-
ing the formation of a vortex ring behind a circular orifi ce. The vorticity distribution 
on a transversal section (left panel) shows the shear layer separating from the orifi ce 
that eventually rolls-up into the jet head; however it must be kept in mind that this 
planar picture corresponds to a three-dimensional vortex structure that is more dif-
fi cult to represent on paper. The vortex ring corresponding to the vortex core is 
shown (right panel) to emphasize the main element of the three-dimensional vortex. 
In general, however, there is some ambiguity on the effective delineation of a vortex 
boundary. This is not a big issue in two-dimensional systems when the entire vortic-
ity fi eld can be shown in color scale on the picture plane and the different elements 
of the vortex structure are immediately recognized, from the separating shear layer, 
to the rolling-up spiral, to the vortex core (see the left panel of Fig.  2.7 ). However, 
this case is particularly simple because the vorticity has an axial symmetry and 
only the azimuthal component: this fl ow is conceptually planar. Nevertheless, its 

  Fig. 2.7    Formation of a vortex ring from a circular sharp orifi ce. The orifi ce velocity is here con-
stant during time, this snapshot corresponds to a formation time  FT =  3.  Left panel : distribution of 
vorticity on a transversal cross-cut; the vortex core is indicated with a  dashed line .  Right panel : 
three-dimensional view of the vortex ring corresponding to the core of the forming vortex visual-
ized by the  l  

2
  method (see text). The shear layer separating from the edge rolls-up into a vortex 

ring that corresponds to the jet head. The vortex has a curvature, the self-induced velocity is 
directed downstream and adds on top of the background velocity       
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 three-dimensional representation, on the right panel of Fig.  2.7 , certainly contains 
less complete information, and the choice of the vortex core boundary severely 
infl uences the three-dimensional structure that is eventually visualized.  

 The defi nition of a vortex structure is a critical issue in three-dimensional fl ows, 
when vorticity is a vector fi eld arbitrarily extended in three-dimensional space. 
A generally accepted defi nition of a vortex is still lacking. The level of vorticity 
cannot be suffi cient because the highest magnitudes are typically found in the sepa-
rating vortex layer, or in the boundary layer, structures made by vorticity that have 
not yet become a vortex. Loosely speaking, a vortex is a region where vorticity 
levels are higher than in the surrounding, where the vorticity distribution presents 
some coherence, and also where the relative motion of surrounding fl uid elements 
follows circular paths or, more precisely, where the fl uid is subjected to a centripetal 
acceleration. There are several tentative defi nitions; currently, unless the specifi c 
problem suggests an  ad-hoc  defi nition, the most accepted technique to identify a 
vortex structure is the so-called  l  

2
  method introduced in by Jeong and Hussain 

 (  1995  ) . There the vortex boundary is identifi ed by the constant level of a scalar 
quantity,  l  

2
 , evaluated from the properties of velocity gradient. 1  Specifi c details are 

contained in (Jeong and Hussain  1995  )  where a review of other existing methods is 
also given. In brief, physically, this quantity identifi es the regions where fl uid pres-
sure is minimum with the further care that only pressure gradients imputable to 
vorticity (rotational motion) are accounted, leaving aside the infl uence of the irrota-
tional part of the velocity. Therefore the scalar quantity,  l  

2
 , takes minimum values 

at the center of a vortex where pressure is low because centrifugal forces push the 
fl ow away. This technique has been successful in several applications, ranging from 
simple vortex fl ows to turbulence, and it allows extracting and visualizing the coher-
ent vortex structures and then to build interpretations schemes of their dynamics. 

 Vortex rings are the simplest vortex structures that exhibit phenomena that are 
typical of three-dimensional vortex dynamics. A vortex ring presents a self-induced 
velocity proportional to its circulation and its curvature. Such a self-induced velocity 
gives rise to a peculiar limiting process of three-dimensional vortex formation that 
was fi rst reported by Gharib et al. in  1998 . During its formation, the vortex ring is 
continuously fed by the rolling-up shear layer separating from the orifi ce edge, there-
fore its circulation grows and the self-induced vortex translation velocity increases as 
well. The self-induced translation velocity of the vortex ring rises until it exceeds the 
velocity of the separating shear layer. At this point, the primary vortex detaches from 
the layer behind with a phenomenon known as  pinch-off . At the same time the newly 
separated vorticity cannot reach the escaped vortex and eventually rolls-up in its 
wake. In one sentence,  vortex ring pinch-off occurs when the velocity of the trailing 
jet falls below the celerity of the leading vortex ring  (see Dabiri  2009  for a review). 

   1   The scalar  l  
2
  is the intermediate eigenvector of the tensor build by the sum  D  2  +  W  2 , with  D  and  W  

the rate of deformation and rotation tensors, respectively, defi ned also as the symmetric and asym-
metric parts of the velocity gradient. This sum corresponds to the contribution to pressure curvature 
imputable to rotary motion alone, when this contribution to pressure has a minimum two out of 
three eigenvalues must be negative, otherwise two of them are positive. Therefore monitoring the 
intermediate eigenvalue allows verifying the presence of such vorticity-induced pressure minima.  
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 The timing of this limiting process has been found to be well described in terms 
of the formation time introduced at the end of the previous chapter. It revealed the 
existence of a critical value for the formation number, about FT  »  4. Above this limit, 
the vortex ring cannot grow as a unique structure and multiple vortices develop in its 
wake. Indeed, the self-induced velocity of a curved vortex is proportional to   G  / D  and 
the formation number can also be interpreted as the ratio between the velocity of the 
vortex ring and that of the shear layer. One example of the vortex ring formation 
process for a formation time larger than the critical value is shown in Fig.  2.8 .  

 The case of vortex ring formation after a circular opening represents a prelimi-
nary conceptual basis for the interpretation of the more complex phenomena involved 
in the three-dimensional vortex formation from general geometries. Let us move 
forward and consider the fl ow across sharp edge orifi ces with a slender shape. In this 

  Fig. 2.8    Formation of a vortex ring from a circular sharp orifi ce. The orifi ce velocity is here con-
stant during time, this snapshot corresponds to a formation time  FT =  5.  Left panel : distribution of 
vorticity on a transversal cross-cut; vortex cores are indicated with dashed lines.  Right panel : 
three-dimensional view of the vortex rings corresponding to the core of the forming vortices. The 
primary vortex has grown until its self-induced velocity has become larger than that of the shear 
layer behind, afterward the principal vortex escaped downstream and the shear layer produces 
smaller vortices in its wake       
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case, the opening has a variable curvature and the separating vortex fi lament shall 
initially present a variable curvature along its axis as well. These differences give 
rise at least to two potential effects in sequence. First, the self-induced velocity, 
which is proportional to the curvature, will be different along the vortex fi lament and 
will progressively deform it. Secondly, the formation time depends on the local cur-
vature and the vortex will reach the limiting critical value at different times along the 
different portions of the fi lament. These phenomena give rise to the deformation and 
eventual three-dimensional metamorphoses of the vortex structure separating from a 
non-circular orifi ce. Furthermore, once the vortex loses its stable regular shape, the 
three-dimensional interactions give rise to a progressive destruction of the vortex 
into smaller elements, which in turn deform into even smaller ones, until they are 
dissipated for viscous effects. In general, vortex formation after three-dimensional 
geometry may give rise to irregularly shaped structures, these become unstable and 
undergo to a rapid energy dissipation. One exemplary case of the three-dimensional 
vortex formation from a slender orifi ce is shown in Fig.  2.9  (Domenichini  2011  ) .  

 The concept of limiting vortex formation, previously described for vortex rings, 
presents a renewed role in the prediction of the transition toward the breaking and 
dissipation of three-dimensional forming vortices. In fact, the major disturbance to 
the stability of a vortex loop occurs when part of it, the most curved portion, reaches 
the limiting formation time and develops small vortices. The limiting formation 
time should be computed along the vortex loop with the local value of the orifi ce 
curvature. Its variability gives the differential timing of the limiting process and 
represents a measure of the instability of the formed vortex structure. Its smallest 
value represents the earliest reach of the limiting process and the beginning of the 
transition toward three-dimensional disturbance. 

 The three-dimensional vortex formation from smooth surfaces, after a constric-
tion like a stenosis or in a vessel enlargement, introduces additional elements of 
complexity that do not allow drawing a simple unitary picture of the involved phe-
nomena. The initial instants following boundary layer separation and initial roll-up 
are essentially two-dimensional with a moderate infl uence from the three- dimensional 
structure. Afterward, the differential vortex formation leads to developments of 
widely different results depending on the differences in the separating geometry, in 
the interaction with the nearby walls and with other surrounding elements. Specifi c 
examples of such vortex formation phenomena as they realize in sites of interest for 
the cardiovascular circulation are provided through this volume. 

 An important source of complexity comes from the potential variability in the 
localization of the separation. In the two-dimensional description, the separation 
departs from the smooth wall at a point that, as said earlier, may change over time. 
In three-dimension, when the transversal span is included, the separation point 
transforms into a  separation line . Until this line has a smooth geometry, it refl ects 
into the formation of a smooth vortex loop. More often, the separation line is irregu-
lar along its length and deforms in time giving rise to an irregular vortex structure 
that immediately develops into a dissipative, chaotic, three-dimensional structure. 

 It is altogether common that the separation line is not even a closed line but 
a segment of fi nite length. In this case, the separation is localized and remains 
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  Fig. 2.9    Three-dimensional vortex formation from a slender orifi ce, made of two half circles con-
nected by straight segments. The orifi ce velocity is here constant during time, the four snapshots 
correspond to a time sequence where the value of the formation time are  FT =  2.5,  FT =  3.75, 
 FT =  5,  FT =  6.25. One quarter of the entire space is shown for graphic clarity (allowed by sym-
metry); the vorticity contours are reported on the side planes to help understating the three-dimen-
sional arrangement of the principal vortex fi laments. In the initial phase, the formed vortex loop 
presents a variable curvature and deforms because of the higher self-induced translation speed in 
the more curved parts; such a deformation leads to further changes in the three-dimensional curva-
ture and further deformations. Later on, the vortex reaches the limiting formation phase behind the 
circular part of the orifi ce only, where smaller vortices appear. Afterwards the vortex structure 
loses its individuality and becomes a set of entangled three-dimensional elements that rapidly dis-
sipate for viscous stresses       

[AU1]
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incomplete in its three-dimensional formation. For example, a vessel can present, as 
it typically does, a constriction on one side only of the wall, and the vortex develops 
and rolls-up only locally. Nevertheless, the solenoidal constraint for the vorticity 
fi elds requires that any vortex line cannot terminate into the fl ow. Therefore the 
incompletely formed vortex loop, locally separated from the boundary layer, remains 
connected with the smooth vorticity distribution contained in the remaining bound-
ary layer. Such type of vortex structure, with a reverse U-shape, normally called 
 vortex hairpin , are evidently not stable, their tip is slower than the fl ow, and rapidly 
undergo a three-dimensional dissipative evolution. 

 In conclusion, three-dimensional vortex formation from circular geometries pro-
duces ring-like vortex loops that are subjected to a limiting process, and gives rise 
to multiple rings when this limit is overcome. Formation from irregular geometries 
normally leads to unstable vortex structures that are rapidly dissipated. Under rela-
tively simple conditions, the limiting process still allows to evaluate the presence 
and the timing of the eventual vortex breakdown. The complexity of the actual phe-
nomena involved should, however, be evaluated in the different specifi c conditions.  

    2.6   Energy Loss and Force of Vortex Formation 

 The previous chapters have evidenced how the vortex formation process dramati-
cally infl uences the fl ow motion. In addition to this, formation also refl ects in the 
generation of dynamical actions on the surrounding tissues and in energetic losses 
along the vessel. 

 Consider an obstacle, like a diaphragm, a valve, a stenosis, that partially obstructs 
the otherwise free fl owing of the fl uid inside a vessel, as shown in Fig.  2.10 . In 
absence of any vortex formation, pressure would change as dictated by the Bernoulli 
balance. However, the development of a vortex provokes an additional pressure 
drop (or energy loss) due to the transformation of energy into vortex inertia, and an 
additional longitudinal force on the obstacle wall.  

  Fig. 2.10    A vessel that presents an obstacle partially obstructing the fl uid fl ow, may give rise to 
vortex formation that, in turn, generates a force on the obstacle. The picture reports example of a duct 
with a diaphragm ( top-left ), a vessel with a stenosis ( bottom-left ), and a trans-valvular fl ow ( right )       
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 Let us evaluate the pressure drop in the simple confi guration of a rectilinear duct 
with a diaphragm inside, as sketched in Fig.  2.11 . This example allows evidencing 
the pressure drop due to vortex formation only, leaving aside the transformation 
between kinetic energy and pressure caused by variation of the duct size. The eval-
uation of pressure losses in a partially obstructed straight vessel can be performed 
by the equation of motion (like the Bernoulli theorem, in Eq.   1.9    ). Using the equa-
tions with particular care (written along the streamlines and summed-up for all 
stream-tubes connecting the inlet to the outlet) the pressure drop can eventually be  
expressed as

     D = +dU dI
p L

dt A dt
rr    (2.8)  

where any viscous dissipative effects have also been here neglected. Both the two 
terms on the right side derive from the inertial part of the Bernoulli theorem inte-
grated over all stream-tubes. The former the inertia of the average motion, this is 
a reversible pressure loss that sums to zero in a time-periodic motion when the 
acceleration and deceleration and a net sum equal to zero. The latter represents 
the additional change of fl uid inertia that is imputable to the formation of the 
vortex. And it is measured by the variation of the impulse,  I ( t ), of the vortex sys-
tem. The vortex impulse defi ned in general as a vector quantity (Saffman  1992 , 
Sect. 3.2)

     
1
2

= ×∫I xdVw    (2.9)  

of which only the longitudinal component enters in ( 2.8 ). The apparently compli-
cated defi nition of impulse ( 2.9 ) can be made more explicit when considering the 
formation of an individual vortex of growing strength   G  ( t ) from a constriction of 
area  A  

0
 . The impulse is then given by the circulation multiplied by the area sur-

rounded by the vortex  I ( t )   »  A  
0
   G  ( t ), for example the impulse of a vortex ring of 

radius  R  is  I =  p R  2   G  , and from the pressure drop simplifi es to (see also Saffman 
 1992 , Sect. 3.8)

  Fig. 2.11    A schematic portion of a straight duct with an obstacle. The process of vortex formation 
gives rise to an irreversible pressure drop  D  p , and to a vortex-force on the obstacle. These are typi-
cally estimable from global balances without the need to evaluate local details of the fl ow fi eld       
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0D = +

AdU d
p L

dt A dt
Gr r    (2.10)    

 The pressure loss caused by vortex formation, expressed by the second term of 
Eqs.  2.8  or  2.10 , is an inertial effect. It is a consequence of the adherence of the fl uid 
onto the wall because of viscosity, although, it is independent from the actual value of 
viscosity. In summary,  vortex formation gives an irreversible transformation of energy 
into inertia, due to viscous adherence, but independent from the value of viscosity.  

 The presence of an obstruction in the otherwise rectilinear duct deviates the fl ow 
and provokes the development of a force on the obstacle whose strength increases 
during a vortex formation process. This force follows from the difference of pres-
sure between the front and the back faces of the obstacle. The high pressure in the 
front face is due to the fl ow that impacts on it to be deviated (in Bernoulli terms, the 
velocity decreased approaching the front face of the obstruction and the pressure 
rises). The dramatically lowered pressure on the back face, instead, is very much a 
consequence of the vortex generation. It is due to the sharp pressure decrease across 
the separating shear layer that connects the wall to the growing vortex. The total 
force made by the fl uid onto the obstacle can be evaluated by integrating the value 
of pressure and shear stresses all over its solid surface. This direct calculation is 
often unfeasible because it requires a very accurate knowledge of the fl uid properties 
very close to the interface with the solid boundary. An alternative approach follows 
from the integral balance of momentum (the product of mass and velocity integrated 
over the entire volume). It states that the rate of change of momentum within any 
arbitrary region of fl uid, cleared from the net fl ow of momentum across the bound-
ing surfaces, can only be imputable to the forces that act on the fl uid contained 
inside that region (see, for example, Panton  2005 , Sect. 5.14). This is again Newton’s 
second law, here expressed in integral form for an entire region that reads

     + = +dM
M G Pfluxdt    (2.11)  

where the left side contains the rate of change of momentum  dM / dt  (the acceleration 
of the fl uid) and the fl ux of momentum  M  

 fl ux 
 , (positive when exiting). On the right 

hand side,  G  indicates the volume forces, like gravity, and the symbol  P  represents 
the forces acting on all the surfaces bounding the chosen region. These include both 
the contribution of pressure difference at the open ends of the region and the total 
stresses acting between the fl uid and the obstacle, which is equal and opposite to the 
unknown force made by the fl ow onto the obstacle. 

 Let us consider again the simple duct with constant cross-section sketched in 
Fig.  2.11 , with the objective of evaluating the longitudinal force,  F , exerted on the 
solid obstacle because of the vortex formation process. In this case, the total fl ux of 
momentum is zero because the same amount that enters from the inlet exists at the 
outlet, and the volume force  G  due to gravity is simply the static vertical weight of the 
fl uid volume weight that can be ignored. The longitudinal balance ( 2.11 ) thus 
expresses a dynamic equilibrium between the change of momentum,  dM / dt , and the 
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surface forces,  P . First, the product of the fl uid density with the velocity gives the 
momentum  M  over the whole volume. It is easy to understand that, in a duct, the 
whole volume can be spanned by a sequence of cross-section slices, and that the inte-
grated velocity is the total fl uid discharge,  Q = U × A , across that section. When the 
lateral walls do not move (or their velocity is negligible) the discharge does not vary 
along the length of the duct, and the rate of change of momentum is proportional to 
the rate of change of the discharge. Mathematically, it can be expressed as   r  × L × dQ / dt , 
where   r   is the fl uid density, and  L  is length of the considered portion of the duct. The 
surface force,  P , presents two different contributions. First, the forces acting on the 
open ends: the forward pushing pressure at the inlet section and the backward pushing 
pressure at the outlet, which sum up to  D  p × A . Second, the total longitudinal force 
made by the entire solid boundaries,  −F . This includes both the actual force across 
the contour of the obstacle and the viscous shear stress on the lateral surfaces that are 
normally negligible along short tracks. Summing up, Eq.  2.11  becomes

     D= −dQ
L pA F

dt
r    (2.12)   

 Insertion of the expression for the pressure drop that was previously evaluated in 
Eq.  2.8  shows that the force generated on an obstacle by vortex formation can be 
primarily expressed by

     = dI
F

dt
r    (2.13)  

neglecting the additional contributions that may come from viscous losses. In gen-
eral, when the tissues involve a more complicated geometry and possibly movable 
sidewalls, further terms should be included. These, however, do not relate directly 
with the vortex formation and are typically estimable from geometry and average 
fl ow properties. 

 In the simpler case of a single vortex of circulation   G  ( t ) across an area  A  
0
 , when 

the pressure drop is expressed by Eq.  2.10 , the force simplifi es in

     0= d
F A

dt
Gr    (2.14)   

 This expression permits to associate a force to those elementary vortex formation 
processes when the intensity growth of the vortex is somehow estimable. For exam-
ple, the initial strength of a starting vortex can be evaluated from general vortex 
formation concepts, like those introduced in Sect.  2.4 . Therefore, when a fl ow accel-
erates across a sharp orifi ce, the resulting force during the starting phase turns out 
to be proportional to   r A  

0
 ( U  2 / t ) 2/ 3  . On the other long-time extreme of a jet, when its 

head vortex is far downstream, the separating shear layer, of intensity  U , translates 
straight downstream with a velocity proportional to  U.  In this case, see the end of 
Sect.  2.4 , the emitted circulation rate is  d G  / dt  »  U  2  and the force about   r A  

0
  U  2 . 
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 Recapitulating, the phenomenon of vortex formation generates an additional 
force on the obstacle that is proportional to the orifi ce area and the rate of growth of 
the vortex strength.  Vortex formation is associated with force generation , an effect 
that may be benefi cial or detrimental depending on the specifi c. For example, vortex 
formation behind a valvular leafl et supports and regulates its opening/closing 
dynamics; vice versa, when a stenosis is subjected to vortex formation it suffers a 
streamlined hammering at every heartbeat.  

    2.7   Vortex Interactions 

 When two or more vortices come nearby each other, they likely interact in an intense 
and irreversible manner. The interaction of vortices involves many different and 
very complicated phenomena, the principal are outlined here. 

 Let us fi rst consider two-dimensional vortices. A vortex is associated with a 
rotating fl ow about it whose velocity is proportional to the vortex circulation,   G  , 
and inversely proportional to the distance,  r , from the vortex center:  v =  G  /2  p r . 
Two vortices that come in close encounter reciprocally induce such a rotation 
velocity each other. When such vortices have the same sign they rotate together 
one around the other; in addition, the differential velocity within each individual 
vortex deforms it and makes the vortices winding up one over the other and even-
tually merge into a single larger one made by the sum of them. This process is 
associated with little energy dissipation. On the contrary, two vortices with oppo-
site circulation, a vortex pair, translate together for the self-induced velocity (simi-
larly to what a vortex ring does) along a straight or curved path depending on the 
relative strengths. Again, the differential velocity inside each single vortex pro-
duces the winding up of one’s vorticity strip on the other; however, such vorticity 
strips are of opposite sign and do not merge rather they annihilate each other and 
reduce the individual vortices’ strength. 

 The close encounter of three-dimensional vortex loops begins with the local 
interaction between the closest tubular elements of the two vortices that, initially, is 
nearly two-dimensional. Let us fi rst remark that a close encounter between tubular 
elements of the same sign is an extremely rare event because the overall self-induced 
velocity of the corresponding vortex loops would tend to separate the vortices. Thus, 
three-dimensional interaction begins prevalently between two oppositely rotating 
portions of a vortex tube. One example of the interaction between two identical 
vortex rings is shown in Fig.  2.12 . Initially, the local interaction is approximately 
the two-dimensional process described above: the nearby oppositely rotating tubu-
lar elements induce the velocity each other and try to translate away. This produces 
a local stretching of the three-dimensional vortex tube, a stretching that accelerates 
while the tubes become closer and, in a non-symmetric case, would locally wind up 
one another. The interacting structures develop increasingly small scales until vis-
cous diffusion becomes a dominant effect, at this point the  reconnection of vortex 
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lines  occurs: adjacent opposite vorticity is annihilated by dissipation and the vortex 
tubes tend to fuse one onto the other (Kida and Takaoka  1994  ) .  

 The interaction between two identical vortices, like that shown in Fig.  2.12 , may 
result into a complete vortex reconnection and a relatively simple new vortex tube. 
More often, however, one vortex is stronger than the other is, only part of its tubular 
structure can reconnect with the other weaker vortex, and the incomplete reconnec-
tion gives rise to new vortices with a complex branched geometry. In general, the 
vortex structure resulting from the fusion of previous interacting vortices, typically 
presents a very irregular geometry. Differential curvatures, which give sharply vari-
able self-induced velocity and local motion, and differential vorticity strength, 
which gives axial fl ow along the tube, tend to rapidly further deform the vortex, 
produce further reconnections, and give rise to smaller vorticity structures. In other 
terms, an irregular three-dimensional vortex structure is overall unstable, tends to 
destroy itself, and is short lived. The more a vortex is regular, like a vortex ring, the 
more it remains coherent and lasts longer. 

 A special case of vortex interaction, which is particularly relevant in closed sys-
tems like cardiovascular vessels, is the  interaction with a nearby wall . The vortex-wall 
interaction can be divided into two different phenomena: the  irrotational interaction , 
that is a consequence of the wall impermeability; and the  viscous interaction  with the 
vorticity in the boundary layer. Let us consider the two effects separately. 

 First, an isolated vortex induces a rotary motion where streamlines are circular. 
When such a vortex approaches an impermeable wall, the streamlines must deform 
to avoid crossing the boundary. With reference to Fig.  2.13  (left panel), the modi-
fi cation of the fl ow fi eld that satisfi es the impermeability condition can be imme-
diately constructed simply by symmetry considerations. It is the irrotational fl ow 
that would be induced by an  image vortex  of opposite circulation placed symmetri-
cally below the wall. Such an image vortex gives a velocity perpendicular to the 
wall that is opposite to that of the real vortex, and thus ensures that the fl uid does 

  Fig. 2.12    Vortex reconnection, and topological metamorphosis between two impacting vortex 
rings of equal circulation; the brightness of the fi lament indicates the strength of the corresponding 
vorticity. When oppositely rotating vortex tubes get close, they produce a local vortex stretching 
due to the self-induced velocity (from  left to central panels ). During stretching, the boundary 
between the vortices becomes locally sharper until the fi laments fuse one into the other for viscous 
effect (from  central to right panels ). After vortex reconnection a new structure is formed, typically 
its geometry is irregular, the vortex is often unstable and short lived       
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not penetrate into it. On the contrary, the tangential velocity has the same sign of 
that due to the real vortex and therefore the velocity adjacent to the wall increases 
( splash effect ). In addition, the image vortex also induces a velocity to the real 
vortex that accelerates or decelerates (depending on the direction of the circula-
tion) with respect to the background fl ow because of this  image effect . For exam-
ple, a (clockwise) vortex that just formed from a wall underneath is decelerated by 
the image below the same wall, while it accelerates when it approaches a wall on 
the opposite side.  

 Second, in addition to the image effect, a vortex near a wall also infl uences the 
development of the boundary layer because of the viscous adherence condition at 
such a wall. A vortex creates a local velocity gradient along the wall, acceleration 
followed by deceleration (or vice versa depending on the direction of rotation). This 
perturbation, as previously discussed in Sect.  2.3 , may give rise to a vortex-induced 
separation of the boundary layer and to the formation of secondary vortices as it is 
sketched in Fig.  2.13  (right panel). 

 When the vortex-boundary interaction described above applies to a tract of a 
three-dimensional vortex tube, it eventually affects the following three-dimensional 
dynamics. First, the image effect gives a local stretching and deformation of a vor-
tex fi lament. Second, when the vortex gets closer, it eventually interacts directly 
with the vortex-induced vorticity distribution. This is an interaction between oppo-
sitely circulating vorticity. That gives rise to the local wind-up of the wall vorticity 
around the approaching vortex and to reconnection with its vortex lines. Eventually, 
the vortex crops by dissipation in the regions closer to the wall; this unbalances the 
three-dimensional vortex structures that tends to rapidly further deform and develop 
small structures that are eventually dissipated.  

  Fig. 2.13    The interaction of a vortex with the wall produces two separate effects. First ( left panel ), 
the condition of impermeability is satisfi ed by a distortion to the vortex-induced fl ow that is equiv-
alent to having an opposite vortex placed symmetrically below the wall. The presence of such a 
“image” vortex increases the tangential velocity next to the wall, and induces a translation velocity 
to the otherwise still vortex. The second effect ( right panel ) is due to viscous adherence, the devel-
opment of a boundary layer and eventually a vortex-induced separation       
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    2.8   A Mention to Turbulence 

 Let us enter smoothly into the realm of fully developed turbulence by deepening a 
little further the concept of interaction between three-dimensional vortices intro-
duced in the previous chapter. We have said there that the interaction between two 
vortices fi rst deforms the overall,  large scale  geometry of the vortex loops then, 
after sequences of reconnections, breaking of vortices and further deformations, it 
eventually transforms the original vorticity into several irregular small structures. 
Such  small scale  elements present sharp velocity gradient, viscous friction, and are 
rapidly dissipated. 

 Now consider that large vortices are continuously generated, formed from the 
surrounding boundary. The resulting fl ow witnesses the simultaneous presence of 
these large structures with others of all intermediate sizes from these down to the 
smallest vortices dominated by viscosity. A measure of the complexity of such a 
fl ow can be provided by from the amount of such contemporary vortices, measured 
by the ratio between the largest scale, say  L , and the smallest one, that is indicated 
with   h  . When  L  is comparable to   h  , the fl ow is a regular one. For example, if the 
system creates continuously vortex loops of size  L , the resulting fl ow is a sequence 
of individual rings that decay as time proceeds because there are no vortices of a 
smaller size. On the opposite end, when  L  is much larger than   h  , the fl ow presents 
the just generated vortex loop of size  L , the previously generated vortices that broke 
down into smaller structure of size, say,  L /2, and a large number of interacting vor-
tices of progressively small size up to the smallest ones. The order of magnitude of 
this complexity can be estimated from the phenomenological theory of turbulence 
(due to Kolmogorov in 1941 and reported, for example, in Frisch  1995 , Sect. 7.4)

     
3/4≈L

Re
h    (2.15)  

where  Re  is the  Reynolds number 

     =
ν

UL
Re    (2.16)  

that was previously introduced in (  1.21    ). When the Reynolds number is large 
enough, the fl ow presents fl uctuations on velocity and vorticity over a wide range of 
scales, and can be classifi ed as a  turbulent fl ow . 

 An increased friction between fl uid elements and enhanced energy dissipation 
with respect to regular fl uid motion characterizes turbulence. In fact, the develop-
ment of turbulence is the strategy used by fl uids to dissipate the excess energy. 
When a fl uid motion presents a large density of energy (high velocity), the fl uid may 
be unable, in a regular motion, to maintain equilibrium between viscous dissipation 
and the external energy source; in that case, it increases the particle paths by devel-
oping swirling motions and small scales with higher shear rate to increases viscous 
dissipation up to equilibrium. In fact, the Reynolds number also represents the ratio 
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between the kinetic energy introduced in the large scales, proportional to   r U  2 , and 
their ability to dissipate with shear stress, grossly estimable as proportional to 
  r  n U / L . When the Reynolds number increases above a certain threshold, smaller 
scales develop to enhance dissipation. In other words, regular fl ow becomes unsta-
ble and turbulence appears. Every realization of fl ow motion presents a  critical 
value of the Reynolds number  above which the motion develops turbulence. The 
value of the critical Reynolds number was mentioned in Sect.   1.6     to be about 2,300 
in the case of steady fl ow in a circular vessel. 

 Turbulence enhances energy dissipation and therefore it is normally a threat of 
excessive energy consumption in the vascular circulation. Another property is the 
unpredictability of its chaotic fl uctuations that makes turbulent fl ows diffi cult to 
control, model, and manage. On the other side, turbulence has several positive 
implications; fi rst of all, it makes life possible by enhancing mixing and diffusion. 
While viscous diffusion is an extremely effi cient mechanism to distribute substances 
at very small scales, turbulent dispersion dominates mixing at larger scales. For 
example, viscous diffusion length, which grows proportionally to  √t  (see Eq.   1.16    ), 
in water takes a few hundredth of a second to reach 1 mm, a few second for 1 cm, 
and over 1 h for 1 m. On the contrary, the  accelerated turbulent dispersion  domi-
nates the mixing and heat propagation at scales suffi ciently larger, typically above a 
few millimeters (in general as soon as the Reynolds number is above a few thou-
sands). It is evident how turbulence is ubiquitous in nature and how it ensures the 
mixing that is experienced in everyday life. 

 In general, we may think of turbulence as a system of entangles and interacting 
vortex elements of disparate sizes. Ranging from the large size generated by the 
boundaries, to the smaller size where the fl ow is smoothed out by viscous effects. 
These vortices are not clear individual structures like those discussed in previous 
chapters. These are the  turbulent eddies , loosely defi ned blob of vorticity of some 
size and arbitrary shape coming from the breakdown of the large unstable vortices 
generated from the surrounding boundaries. Turbulence is thus a sea of eddies that 
is stretched and twisted by the velocity fi eld that is induced by vorticity fi eld itself. 
Following Davidson  (  2004 , Sect. 2.4), turbulence is a spatially complex distribution 
of vorticity that exhibits a wide and continuous distribution of scales and advects 
itself in a chaotic manner. 

 The overall dynamics of turbulence is normally described in terms of  energy 
 cascade  (Davidson  2004 , Sects. 1.6 and 3.2). An external energy input (slope of a 
channel, a pumping pressure) pushes a fl uid within its boundaries, across an orifi ce, 
around an obstacle, along an irregular vessel bend. The fl ow thus generates energetic 
vortices whose size is comparable with that of the container, these vortices interact 
and produce smaller eddies, which further interact producing turbulent eddies of pro-
gressively smaller size. While eddies become smaller, velocity gradients are larger, 
and viscous shear stresses become increasingly capable to dissipate kinetic energy 
into heat. At the lower end of this energy cascade, very small eddies are entirely 
 dissipated and do not generate anything smaller. Thus energy is injected in the turbu-
lent fl ow at large scales, it cascades toward smaller scales, and it is dissipated in the 
smallest scales of the fl ow by viscous friction. The example in Fig.  2.14  shows the 
 co-presence of vortices of different scale in a two-dimensional turbulent fl ow.  
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 The most common strategy to tackle the problem of turbulence relies of  statistical 
methods, searching for a description of the average motion (responsible for trans-
port) and of its fl uctuations (responsible for dispersion). This is such a common 
practice that the study of turbulence is often considered that of  statistical fl uid 
mechanics . However, turbulence is not a random process, it is actually a determin-
istic phenomenon; a turbulent fl ow is a solution of the mathematical equations gov-
erning fl uid motion (the Navier-Stokes Eq.   1.14    ). The underlying deterministic 
nature of turbulence often emerges in the form of  coherent structures , a somehow 
collectively organized dynamics, developing within a random background. These 
coherent structures are often the large scale vortices generated during vortex forma-
tion processes, possibly modifi ed for the presence of turbulence. Or they are vorti-
ces that develop from the instability of a parallel fl ow, typically vortex layer, like in 
boundary layer fl ows (Davidson  2004 , Sect. 4.2.6), in some other cases they emerge 
from coalescence of incoherent background vorticity, like the vortices in two-
dimensional fl ows of Fig.  2.14  or three-dimensional fi laments. Coherent vortex 
structures typically contain most part of the energy and therefore they represent the 
fundamental objects in the analysis of each specifi c turbulent fl ow. In other words, 
the concepts of vortex formation discussed above fi nd application to turbulent fl ows 
as well, keeping in mind the presence of the turbulent background, and extending 
the concept of vortex formation loosely to vortex structures developing for instabil-
ity of smooth fl ows. 

 In the cardiovascular system, turbulent fl ows are rarely encountered. The largest 
scales of motion achievable in the arterial network cannot exceed the vessel size, of 
a few centimeters at most. The Reynolds number is normally well below 1,000, with 
the exception of the very largest vessels. The fl ow in the ascending aortic and, some-
time, in the left ventricular cavity can reach values of the Reynolds number up to 
some thousands, just above the critical threshold during a short interval near the 
systolic or diastolic peaks. In any case, when any turbulence develops, it is  weak 
turbulence  with an energetic level that does not infl uence appreciably the main 

  Fig. 2.14    Vorticity fi eld in a 
two-dimensional decaying 
turbulent fl ow. The vorticity 
distribution is shown in  gray 
scale , clockwise vorticity is 
 white , counter-clockwise is 
 black . The fl ow fi eld presents 
interacting turbulent eddies, 
from vortices to shear layers, 
with a few order of 
magnitude differences 
between their sizes       
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dynamics and vortex formation processes. Such a weak turbulence simply increases 
the dissipation level through more intense interaction between larger vortices. It 
should be remarked that the highest levels of turbulence, if any, in an unsteady pul-
satile fl ow are recorded during the deceleration after the peak of the fl ow. In fact, 
although the instantaneous Reynolds number has decreased, the fl ow has been fi lled 
with the energy during the maximum velocity and has to dissipate such energy dur-
ing deceleration. Deceleration enhances shear layer instability phenomena, and 
boundary layer separation, which support turbulence. 

 Weak turbulence may develop in the diastolic fi lling of the left ventricle when the 
mitral jet impacts onto the walls, as it may occur in a dilated heart with a large car-
diac output. The most frequent appearance of turbulence occurs in the aortic artery, 
particularly in the ascending part. Here the tri-leafl et geometry of the aortic valve 
provokes a rather complex three-dimensional vortex formation that, associated with 
the large Reynolds number (roughly from 3,000–8,000 at peak systole), gives rise to 
interactions that produce small scales vorticity and weak turbulence. This is even 
enhanced in presence of mechanical valves because of the more irregular interac-
tions between the unnatural geometry of vortices and shear layer behind the artifi -
cial orifi ce. Specifi c examples will be treated in the next parts of the book.      
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