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 Carbon-carbon Covalent Bonds
 Carbon forms strong covalent bonds to other carbons 

and to other elements such as hydrogen, oxygen, 
nitrogen and sulfur
 This accounts for the vast variety of organic compounds possible

 Organic compounds are grouped into functional group 
families
 A functional group is a  specific grouping of atoms (e.g. carbon- 

carbon double bonds are in the family of alkenes)
 An instrumental technique called infrared (IR) spectroscopy is 

used to determine the presence of specific functional groups
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 Hydrocarbons: Representative Alkanes, Alkenes 
Alkynes, and Aromatic Compounds

 Hydrocarbons contain only carbon and hydrogen atoms
 Subgroups of Hydrocarbons:

 Alkanes contain only carbon-carbon single bonds
 Alkenes contain one or more carbon-carbon double bonds
 Alkynes contain one or more carbon-carbon triple bonds
 Aromatic hydrocarbons contain benzene-like stable structures (discussed later)

 Saturated hydrocarbons: contain only carbon-carbon single bonds 
e.g. alkanes

 Unsaturated hydrocarbons: contain double or triple carbon-carbon 
bonds e.g. alkene, alkynes, aromatics

 Contain fewer than  maximum number of hydrogens per carbon
 Capable of reacting with H2 to become saturated
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 Representative Hydrocarbons
 Alkanes

 Principle sources of alkanes are natural gas and petroleum
 Smaller alkanes (C1 to C4) are gases at  room temperature

 Methane is 
 A component of the atmosphere of many planets
 Major component of natural gas 
 Produced by primitive organisms called methanogens found in mud, sewage and 

cows’ stomachs 
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 Alkenes
 Ethene (ethylene) is a major industrial feedstock

 Used in the production of ethanol, ethylene oxide and the polymer polyethylene

 Propene (propylene) is also very important in industry
 Molecular formula C3H6

 Used to make the polymer polypropylene and is the starting material for acetone

 Many alkenes occur naturally
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 Alkynes
 Ethyne (acetylene) is used in welding torches because it burns at 

high temperature

 Many alkynes are of biological interest
 Capillin is an antifungal agent found naturally
 Dactylyne is a marine natural product
 Ethinyl estradiol is a synthetic estrogen used in oral contraceptives
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 Benzene: A Representative Hydrocarbon
 Benzene is the prototypical aromatic compound

 The Kekulé structure (named after August Kekulé who formulated it)  is a six-
membered ring with alternating double and single bonds

 Benzene does not actually have discreet single and double 
carbon-carbon bonds

 All carbon-carbon bonds are exactly equal in length (1.38 Å) 
 This is between the length of a carbon-carbon single bond and a carbon-carbon 

double bond 

 Resonance theory explains this by suggesting there are two 
resonance hybrids that contribute equally to the real structure

 The real structure is often depicted as a hexagon with a circle in the middle
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 Molecular orbital theory explains the equal bond lengths 
of benzene by suggesting there in a continuous overlap 
of p orbitals over the entire ring
 All carbons in benzene are sp2 hybridized 

 Each carbon also has a p orbital 

 Each p orbital does not just overlap with one adjacent p but 
overlaps with p orbitals on either side to give a continuous 
bonding molecular orbital that encompasses all 6 carbons

 All 6  electrons are therefore delocalized over the entire ring and 
this results in the equivalence of all of the carbon-carbon bonds
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 Polar Covalent Bonds
 Polar covalent bonds occur when a covalent bond is 

formed between two atoms of differing 
electronegativities
 The more electronegative atom draws electron density closer to 

itself
 The more electronegative atom develops a partial negative charge 

(-) and the less electronegative atom develops a partial positive 
charge (+)

 A bond which is polarized is a dipole and has a dipole moment
 The direction of the dipole can be indicated by a dipole arrow 

 The arrow head is the negative end of a dipole, the crossed end is the positive end 
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 Example: the molecule HCl
 The more electronegative chlorine draws electron density away 

from the hydrogen 
 Chlorine develops a partial negative charge

 The dipole moment of a molecule can be measured 
experimentally
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 A map of electrostatic potential (MEP) is a way to 
visualize distribution of charge in a molecule
 Parts of the molecule which are red have relatively more electron 

density or are negative 
 These region would tend to attract positively charged species

 Parts of the molecule which are blue have relatively less electron 
density or are positive

 These region would tend to attract negatively charged species

 The MEP is plotted at the van Der Waals surface of a molecule
 This is the farthest extent of a molecule’s electron cloud and therefore indicates 

the shape of the molecule

 The MEP of hydrogen chlorine clearly indicates that the negative 
charge is concentrated near chlorine

 The overall shape of the molecule  is also represented
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 Molecular Dipole
 In diatomic molecules a dipole exists if the two atoms are of 

different electronegativity
 In more complicated molecules the molecular dipole is the sum of 

the bond dipoles
 Some molecules with very polar bonds will have no net molecular 

dipole because the bond dipoles cancel out
 The center of positive charge and negative charge coincide in these molecules
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 Examples
 In carbon tetrachloride the bond dipoles cancel and the overall 

molecular dipole is 0 Debye

 In chloromethane the C-H bonds have only small dipoles but the C-
Cl bond has a large dipole and the molecule is quite polar

 An unshared pair of electrons on atoms such as oxygen and 
nitrogen contribute a great deal to a dipole

 Water and ammonia have very large net dipoles



 Chapter 2 14

 Some cis-trans isomers differ markedly in their dipole 
moment
 In trans 1,2-dichloroethene the two carbon-chlorine dipoles cancel 

out and the molecular dipole is 0 Debye
 In the cis isomer the carbon-chlorine dipoles reinforce and there is 

a large molecular dipole
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 Functional Groups
 Functional group families are characterized by the presence of a 

certain arrangement of atoms called a functional group
 A functional group is the site of most chemical reactivity of a 

molecule
 The functional group is responsible for many of the physical properties of a 

molecule

 Alkanes do not have a functional groups
 Carbon-carbon single bonds and carbon-hydrogen bonds are generally very 

unreactive
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 Alkyl Groups and the Symbol R
 Alkyl groups are obtained by removing a hydrogen from an alkane
 Often more than one alkyl group can be obtained from an alkane by removal 

of different kinds of hydrogens

 R is the symbol to represent a generic alkyl groups
 The general formula for an alkane can be abbreviated R-H
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 A benzene ring with a hydrogen removed is called a phenyl and 
can be represented in various ways

 Toluene (methylbenzene) with its methyl hydrogen removed is 
called a benzyl group
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 Alkyl Halides
 In alkyl halides, halogen (F, Cl, Br, I) replaces the hydrogen of an 

alkane
 They are classified based on the carbon the halogen is attached to

 If the carbon is attached to one other carbon that carbon is primary (1o) and the 
alkyl halide is also 1o

 If the carbon is attached to two other carbons, that carbon is secondary (2o) and 
the alkyl halide is 2o

 If the carbon is attached to three other carbons, the carbon is tertiary (3o) and the 
alkyl halide is 3o
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 Alcohols
 In alcohols the hydrogen of the alkane is replaced by the hydroxyl 

(-OH) group
 An alcohol can be viewed as either a hydroxyl derivative of an alkane or an alkyl 

derivative of water

 Alcohols are also classified according to the carbon the hydroxyl 
is directly attached to
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 Ethers
 Ethers have the general formula R-O-R or R-O-R’ where R’ is 

different from R
 These can be considered organic derivatives of water in which both hydrogens 

are replaced by organic groups 
 The bond angle at oxygen is close to the tetrahedral angle

 Amines
 Amines are organic derivatives of ammonia 

 They are classified according to how many alkyl groups replace the hydrogens of 
ammonia

 This is a different classification scheme than that used in alcohols
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 Aldehydes and Ketones
 Both contain the carbonyl group

 Aldehydes have at least one carbon attached to the carbonyl group

 Ketones have two organic groups attached to the carbonyl group

 The carbonyl carbon is sp2 hybridized 
 It is trigonal planar and has bond angle about 120o
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 Carboxylic Acids, Esters and Amides
 All these groups contain a carbonyl group bonded to an oxygen or 

nitrogen
 Carboxylic Acids

 Contain the carboxyl (carbonyl + hydroxyl) group

 Esters
 A carbonyl group is bonded to an alkoxyl (OR’) group
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 Amide
 A carbonyl group is bonded to a nitrogen derived from ammonia or an amine

 Nitriles 
 An alkyl group is attached to a carbon triply bonded to a nitrogen

 This functional group is called a cyano group
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Summary of Important Families of Organic 
Compounds
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 Summary (cont.)
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 Physical Properties and Molecular Structure
 The strength of intermolecular forces (forces between molecules) 

determines the physical properties (i.e. melting point, boiling point 
and solubility) of a compound

 Stronger intermolecular forces result in high melting points and 
boiling points

 More energy must be expended to overcome very strong forces between 
molecules

 The type of intermolecular forces important for a molecule are 
determined by its structure

 The physical properties of some representative compounds are 
shown on the next slide 



 Chapter 2 27



 Chapter 2 28

 Ion-Ion Forces
 Ion-ion forces are between positively and negatively charged ions
 These are very strong forces that hold a solid compound 

consisting of ions together in a crystalline lattice
 Melting points are high because a great deal of energy is required to break apart 

the crystalline lattice

 Boiling points are so high that organic ions often decompose 
before they boil

 Example:  Sodium acetate
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 Dipole-Dipole Forces
 Dipole-dipole forces are between molecules with permanent 

dipoles
 There is an interaction between + and - areas in each molecule; these are 

much weaker than ion-ion forces
 Molecules align to maximize attraction of + and - parts of molecules
 Example:  acetone
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 Hydrogen Bonds
 Hydrogen bonds result from very strong dipole-dipole forces
 There is an interaction between hydrogens bonded to strongly 

electronegative atoms (O, N or F) and nonbonding electron pairs 
on other strongly electronegative atoms (O, N or F)
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 Example
 Ethanol (CH3CH2OH) has a boiling point of +78.5oC; its isomer 

methyl ether (CH3OCH3) has a boiling point of -24.9oC
 Ethanol molecules are held together by hydrogen bonds whereas methyl ether 

molecules are held together only by weaker dipole-dipole interactions 

 A factor in melting points is that symmetrical molecules tend to 
pack better in the crystalline lattice and have higher melting points
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 van der Waals Forces (London or Dispersion Forces)
 Van der Waals forces result when a temporary dipole in a molecule 

caused by a momentary shifting of electrons induces an opposite 
and also temporary dipole in an adjacent molecule

 These temporary opposite dipoles cause a weak attraction between the two 
molecules

 Molecules which rely only on van der Waals forces generally have low melting 
points and boiling points
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 Polarizability predicts the magnitude of van der Waals Interactions
 Polarizability is the ability of the electrons on an atom to respond to a changing electric field
 Atoms with very loosely held electrons are more polarizable
 Iodine atoms are more polarizable than fluorine atoms because the outer shell electrons are more 

loosely held
 Atoms with unshared electrons are more polarizable (a halogen is more polarizable than an alkyl of 

similar size)

 All things being equal larger and heavier molecules have higher boiling 
points

 Larger molecules need more energy to escape the surface of the liquid
 Larger organic molecules tend to have more surface area in contact with each other and so have 

stronger van der Waals interactions
 Methane (CH4) has a boiling point of -162oC whereas ethane (C2H6) has a boiling point of -88.2oC
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 Solubilities
 Water dissolves ionic solids by forming strong dipole-ion 

interactions  
 These dipole-ion interactions are powerful enough to overcome lattice energy and 

interionic interactions in the solid
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 Generally like dissolves like
 Polar solvents tend to dissolve polar solids or polar liquids
 Methanol (a water-like molecule) dissolves in water in all proportions and 

interacts using hydrogen-bonding to the water

 A large alkyl group can overwhelm the ability of the polar group to 
solubilize a molecule in water

 Decyl alcohol is only slightly soluble in water
 The large alkyl portion is hydrophobic (“water hating”) and overwhelms the 

capacity of the hydrophilic (“water loving”) hydroxyl
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 Generally one hydrophilic group (e.g. hydroxyl) can make a 
compound with 3 carbons completely soluble in water

 One hydrophilic group can make a 5 carbon compound at least partially soluble
 A compound is water soluble if at least 3g of it will dissolve in 100 mL water

 Summary of Attractive Electric Forces
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 Infrared Spectroscopy: An Instrumental Method 
for Detecting Functional Groups
 Electromagnetic radiation in the infrared (IR) frequency 

range is absorbed by a molecule at certain 
characteristic frequencies
 Energy is absorbed by the bonds in the molecule and they vibrate 

faster
 The bonds behave like tiny springs connecting the atoms 

 The bonds can absorb energy and vibrate faster only when the added energy is of 
a particular resonant frequency

 The frequencies of absorption are very characteristic of the type of 
bonds contained in the sample molecule

 The type of bonds present are directly related to the functional 
groups present

 A plot of these absorbed frequencies  is called an IR spectrum
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 Infrared Spectrometer
 An infrared spectrometer detects the frequencies absorbed by the 

sample molecule
 Light of all the various IR frequencies is transmitted to the 

molecule and the frequencies absorbed are recorded
 The absorption frequencies are specified as wavenumbers in units 

of reciprocal centimeters (cm-1)
 Alternatively the wavelength  in units of microns (m) can be specified

 The spectrum is a plot of frequency on the horizontal axis versus 
strength of absorption on the vertical axis      
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 There are different types of stretching and bending vibrations 
induced by the absorption of infrared energy

 The actual relative frequency of vibration can be predicted 
 Bonds with lighter atoms vibrate faster than those with heavier atoms 
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 Triple bonds (which are stiffer and stronger) vibrate at higher 
frequencies than double bonds

 Double bonds in turn vibrate at higher frequencies than single bonds

 The IR spectrum of a molecule usually contains many peaks
 These peaks are due to the various types of vibrations available to each of the 

different bonds
 Additional peaks result from overtone (harmonic) peaks which are weaker and of 

lower frequency
 The IR is a “fingerprint” of the molecule because of the unique and large number 

of peaks seen for a particular molecule
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 Interpreting IR Spectra
 Generally only certain peaks are interpreted in the IR

 Those peaks that are large and above 1400 cm-1 are most valuable

 Hydrocarbons
 The C-H stretching regions from 2800-3300 cm-1 is characteristic of 

the type of carbon the hydrogen is attached to
 C-H bonds where the carbon has more s character are shorter, 

stronger and stiffer and  thus vibrate at higher frequency
 C-H bonds at sp centers appear at 3000-3100 cm-1

 C-H bonds at sp2 centers appear at about 3080 cm-1

 C-H bonds at sp3 centers appear at about 2800-3000 cm-1

 C-C bond stretching frequencies are only useful for multiple bonds
 C-C double bonds give peaks at 1620-1680 cm-1

 C-C triple bonds give peaks at 2100-2260 cm-1

 These peaks are absent in symmetrical double and triple bonds
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 Example:  octane

 Example: 1- hexyne
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 Alkenes
 The C-H bending vibration peaks located at 600-1000 cm-1 can be 

used to determine the substitution pattern of the double bond
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 Example: 1-hexene
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 Aromatic Compounds
 The C-C bond stretching gives a set of characteristic sharp peaks 

between 1450-1600 cm -1

 Example: Methyl benzene
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 Other Functional Groups
 Carbonyl Functional Groups

 Generally the carbonyl group gives a strong peak which occurs at 
1630-1780 cm-1 

 The  exact location depends on the actual functional group present
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 Alcohols and Phenols 
 The O-H stretching absorption is very characteristic

 In very dilute solutions, hydrogen bonding is absent and there is a very sharp 
peak at 3590-3650 cm-1

 In more concentrated solutions, the hydroxyl groups hydrogen bond to each other 
and a very broad and large peak occurs at 3200-3550 cm-1

 A phenol has a hydroxyl group directly bonded to an aromatic ring
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Carboxylic Acids
 The carbonyl peak at 1710-1780 cm-1 is very characteristic
 The presence of both carbonyl and O-H stretching peaks is a good 

proof of the presence of a carboxylic acid

 Example: propanic acid
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 Amines
 Very dilute solution of 1o and 2o amines give sharp peaks at 3300-

3500 cm-1  for the N-H stretching
 1o amines give two peaks and 2o amines give one peak
 3o have no N-H bonds and do not absorb in this region

 More concentrated solutions of amines have broader peaks
 Amides have amine N-H stretching peaks and a carbonyl peak
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