POLYMER STRUCTURES

• What are the general structural and chemical characteristics of polymer molecules?

• What are some of the common polymeric materials, and how do they differ chemically?

 How is the crystalline state in polymers different from that in metals and ceramics ?

Polymer

Polymermanyrepeat unit (building blocks)

Carbon chain backbone

Chemistry and Structure of Polyethylene

OC ⊙H

- •Polyethylene is a long-chain hydrocarbon.
- •Top figure shows repeat unit and chain structures.
- •Other figure shows zigzag backbone structure.

Ancient Polymers

- Naturally occurring polymers (those derived from plants and animals) have been used for centuries.
 - Wood Rubber
 - Cotton Wool
 - Leather Silk

Oldest known uses
 – Rubber balls used by Incas

Cellulose

- Cellulose is a highly abundant organic compound. Extensive hydrogen bonding between the chains causes native celluose to be roughly 70% crystalline. It also raises the melting point (>280°C) to above its combustion temperature.
- Cellulose serves as the principal structural component of green plants and wood.
- Cotton is one of the purest forms of cellulose and has been cultivated since ancient times.
- Cotton also serves (along with treated wood pulp) as the source the industrial production of cellulose-derived materials which were the first "plastic" materials of commercial importance.

Rubber

- A variety of plants produce a sap consisting of a colloidal dispersion of *cis*-polyisoprene. This milky fluid is especially abundant in the rubber tree (*Hevea*); it drips when the bark is wounded.
- After collection, the latex is coagulated to obtain the solid rubber. Natural rubber is thermoplastic, with a glass transition temperature of –70°C.
- Raw natural rubber tends to be sticky when warm and brittle when cold, so it was little more than a novelty material when first introduced in Europe around 1770.
- It did not become generally useful until the mid-nineteenth century when Charles Goodyear found that heating it with sulfur — a process he called *vulcanization* — could greatly improve its properties.

$$\begin{array}{c} \mathsf{CH}_3 & \mathsf{H} & \mathsf{CH}_3 & \mathsf{H} \\ \textbf{-}(\mathsf{CH}_2 & \mathsf{CH}_2 - \mathsf{CH}_2 & \mathsf{CH}_2 \\ \end{array}$$

cis-polyisoprene

Frontiers in polymer science

International Symposium Celebrating the 7-9 JUNE polymer 50th Anniversary of the Journal polymer 2009

MAINZ, GERMANY

www.frontiersinpolymerscience.com

polymer

polymer polymer

 ρ_{0}

Opening Remarks

Evolution of POLYMER (1960-2009)

Ian M. Ward, University of Leeds, UK

DYNAMERS: Dynamic Molecular and Supramolecular Polymers Jean Marie Lehn , Université Louis Pasteur, Strasbourg, France, Nobel Laureate

Supramolecular Assemblies of Smart Block Copolymers as Nanocarriers for Gene and Drug Delivery

Kazunori Kataoka , University of Tokyo, Japan

Coffee Break and Poster Session 1

Carbon Polymers as CO 2 -negative products

Markus Antonietti, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam, Germany Welcome Reception

- ----

JUNE 2009		
The Future is Black: Graphene and Carbon Mate		C Transform
Klaus Müllen , Max-Planck-Institut für Polymerforsch	hung, Mainz, Germany	· 2011年1月1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日
Designing functional macromolecules : from en	ergy conversion to	
therapeutics		
Jean M.J. Fréchet, University of California, Berkele	y, USA	The International Journal for
Coffee Break and Poster Session 2		the Science and Technology of
High Flux Membranes: Properties of Thin Glass Donald R. Paul, University of Texas, Austin, USA	y Polymer Films	Polymers
Lunch		
Hybrid Materials at the Interface between Inor <u>Clément Sanchez</u> , Université de Paris VI, France	ganic and Organic Polymers	
Capillary and Cascading Wrinkles	Low Cost "Plastic" Solar Cells: Self-Assembly of B	ulk Hotorojunction
Thomas P. Russell , University of Massachusetts, /	Nano-Materials by Spontaneous Phase Separation	
Coffee Break	Alan J. Heeger , University of California, Santa Barbara	
ATRP: from mechanism to materials	How Polymer Chains Crystallize: Shifting Paradign	
Kris Matyjaszewski , Carnegie Mellon University, F	Murugappan Muthukumar, University of Massachusetts, A	
Poster Session 3 and Reception	Coffee Break and Poster Session 4	
	Periodic Polymers for PhoXonics	
	Edwin L. Thomas, Massachusetts Institute of Technolog	gy, USA
	Lunch	
	Title TBA	
	Sir Richard Friend, Cambridge University, UK	
	Oleo-chemistry meets supramolecular chemistry: Ludwik Leibler, ESPCI (Ecole Supérieure de Physique e	
	Coffee Break and Poster Session 5	
	Reinterpreting the Genetic Code	
	David Tirrell, California Institute of Technology, USA	
	Closing Remarks	

Closing Remarks

End of symposium

Hydrocarbon Molecules

- Many organic materials are hydrocarbons (composed of hydrogen and carbon).
- Most polymers are made up of H and C.
- The bonds between the hydrocarbon molecules are covalent.
- Each carbon atom has 4 electrons that may be covalently bonded, the hydrogen atom has 1 electron for bonding.
- A single covalent bond exists when each of the 2 bonding atoms contributes one electron (ex: methane, CH₄).

Н-С-Н

Saturated Hydrocarbons

- Each carbon has a single bond to 4 other atoms; the 4 valence electrons are bonded, the molecule is stable.
 Examples are seen in the table.
- The covalent bonds in each molecule are strong, but only weak hydrogen and van der Waals bonds exist between the molecules.

Name	Composition	Structure	Boiling Point (°C)
Methane	CH_4	$\mathbf{H} = \mathbf{H} = \mathbf{H}$	-164
Ethane	C_2H_6	$\begin{array}{ccc} H & H \\ I & I \\ H - C - C - H \\ I & I \\ H & H \end{array}$	-88.6
Propane	C_3H_8	$\begin{array}{cccc} H & H & H \\ I & I & I \\ H - C - C - C - C - H \\ I & I & I \\ H & H & H \end{array}$	-42.1
Butane	C_4H_{10}		-0.5
Pentane	$C_{5}H_{12}$		36.1
Hexane	C_6H_{14}		69.0

- Most of these hydrocarbons have relatively low melting and boiling points.
- However, boiling temperatures rise with increasing molecular weight.

Unsaturated Hydrocarbons

 Double & triple bonds are somewhat unstable – involve sharing 2 or 3 pairs of electrons, respectively. They can also form new bonds

- Double bond found in ethylene - C_2H_4

$$H-C\equiv C-H$$

– Triple bond found in acetylene - C_2H_2

Isomerism

• Two compounds with same chemical formula can have different structures (atomic arrangements).

for example: C₈H₁₈

normal-octane

• 2,4-dimethylhexane

 $H_3C+CH_2+_6CH_3$

$$\begin{array}{c}
\mathsf{CH}_{3}\\
\mathsf{H}_{3}\mathsf{C}-\mathsf{CH}-\mathsf{CH}_{2}-\mathsf{CH}-\mathsf{CH}_{3}\\
\mathsf{CH}_{2}\\
\mathsf{CH}_{3}
\end{array}$$

Addition (Chain) Polymerization

Initiation

– Propagation

Condensation (Step) Polymerization

Polymerization

• Free radical polymerization: ethylene gas reacts with the initiator (catalyst). ("R." is the unpaired electron)

Some Common Addition Polymers

Name(s)	Formula	Monomer	Properties	Uses
Polyethylene low density (LDPE)	-(CH ₂ -CH ₂) _n -	ethylene CH ₂ =CH ₂	soft, waxy solid	film wrap, plastic bags
Polyethylene high density (HDPE)	-(CH ₂ -CH ₂) _n -	ethylene CH ₂ =CH ₂	rigid, translucent solid	electrical insulation bottles, toys
Polypropylene (PP) different grades	-[CH ₂ -CH(CH ₃)] _n -	propylene CH ₂ =CHCH ₃	atactic: soft, elastic solid isotactic: hard, strong solid	similar to LDPE carpet, upholstery
Poly(vinyl chloride) (PVC)	-(CH ₂ -CHCI) _n -	vinyl chloride CH ₂ =CHCl	strong rigid solid	pipes, siding, flooring
Poly(vinylidene chloride) (Saran A)	-(CH ₂ -CCl ₂) _n -	vinylidene chloride CH ₂ =CCl ₂	dense, high-melting solid	seat covers, films
Polystyrene (PS)	-[CH ₂ -CH(C ₆ H ₅)] _n -	styrene CH ₂ =CHC ₆ H ₅	hard, rigid, clear solid soluble in organic solvents	toys, cabinets packaging (foamed)
Polyacrylonitrile (PAN, Orlon, Acrilan)	-(CH ₂ -CHCN) _n -	acrylonitrile CH ₂ =CHCN	high-melting solid soluble in organic solvents	rugs, blankets clothing
Polytetrafluoroethylene (PTFE, Teflon)	-(CF ₂ -CF ₂) _n -	tetrafluoroethylene $CF_2=CF_2$	resistant, smooth solid	non-stick surfaces electrical insulation
Poly(methyl methacrylate) (PMMA, Lucite, Plexiglas)	-[CH ₂ -C(CH ₃)CO ₂ CH ₃] _n -	methyl methacrylate CH ₂ =C(CH ₃)CO ₂ CH ₃	hard, transparent solid	lighting covers, signs skylights
Poly(vinyl acetate) (PVAc)	-(CH ₂ -CHOCOCH ₃) _n -	vinyl acetate CH ₂ =CHOCOCH ₃	soft, sticky solid	latex paints, adhesives
cis-Polyisoprene natural rubber	-[CH ₂ -CH=C(CH ₃)-CH ₂] _n -	isoprene CH ₂ =CH-C(CH ₃)=CH ₂	soft, sticky solid	requires vulcanization for practical use
Polychloroprene (cis + trans) (Neoprene)	-[CH ₂ -CH=CCI-CH ₂] _n -	$\begin{array}{c} \text{chloroprene} \\ \text{CH}_2 = \text{CH-CCI=CH}_2 \end{array}$	tough, rubbery solid	synthetic rubber oil resistant

Some Condensation Polymers

Formula	Туре	Components	T _g ⁰C	T _m ⁰C
~[CO(CH ₂) ₄ CO-OCH ₂ CH ₂ O] _n ~	polyester	HO ₂ C-(CH ₂) ₄ -CO ₂ H HO-CH ₂ CH ₂ -OH	< 0	50
	polyester Dacron Mylar	para HO ₂ C-C ₆ H ₄ -CO ₂ H HO-CH ₂ CH ₂ -OH	70	265
	polyester	meta HO ₂ C-C ₈ H ₄ -CO ₂ H HO-CH ₂ CH ₂ -OH	50	240
	polycarbonate Lexan	$(HO-C_8H_4-)_2C(CH_3)_2$ (Bisphenol A) X_2C=O (X = OCH_3 or CI)	150	267
~[CO(CH ₂) ₄ CO-NH(CH ₂) ₈ NH] _n ~	polyamide Nylon 66	HO ₂ C-(CH ₂) ₄ -CO ₂ H H ₂ N-(CH ₂) ₈ -NH ₂	45	265
~[CO(CH ₂) ₅ NH] _n ~	polyamide Nylon 6 Perlon		53	223
	polyamide Kevlar	para HO ₂ C-C ₆ H ₄ -CO ₂ H para H ₂ N-C ₆ H ₄ -NH ₂		500
	polyamide Nomex	meta HO ₂ C-C ₈ H ₄ -CO ₂ H meta H ₂ N-C ₆ H ₄ -NH ₂	273	390
$ \begin{array}{ c c } \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	polyurethane Spandex	HOCH ₂ CH ₂ OH H ₃ C N ^S C N _S C SO	52	

MOLECULAR WEIGHT

• Molecular weight, *M*: Mass of a mole of chains.

- Polymers can have various lengths depending on the number of repeat units.
- During the polymerization process not all chains in a polymer grow to the same length, so there is a distribution of molecular weights. There are several ways of defining an average molecular weight.
- The molecular weight distribution in a polymer describes the relationship between the number of moles of each polymer species and the molar mass of that species.

MOLECULAR WEIGHT DISTRIBUTION

 M_n = the number average molecular weight (mass) M_i = mean (middle) molecular weight of size range *i* x_i = number fraction of chains in size range *i* w_i = weight fraction of chains in size range *i*

Table 4.4aData Used for Number-Average MolecularWeight Computations in Example Problem 4.1				
Molecular Weight Range (g/mol)	Mean M _i (g/mol)	x _i	x_iM_i	
5,000-10,000	7,500	0.05	375	
10,000-15,000	12,500	0.16	2000	
15,000-20,000	17,500	0.22	3850	
20,000-25,000	22,500	0.27	6075	
25,000-30,000	27,500	0.20	5500	
30,000-35,000	32,500	0.08	2600	
35,000-40,000	37,500	0.02	750	
			$\overline{M}_n = \overline{21,150}$	

Molecular weight (10³ g/mol)

Table 4.4b Data Used for Weight-Average Molecular Weight Computations in Example Problem 4.1				
Molecular Weight Range (g/mol)	Mean M _i (g/mol)	Wi	$w_i M_i$	
5,000-10,000	7,500	0.02	150	
10,000-15,000	12,500	0.10	1250	
15,000-20,000	17,500	0.18	3150	
20,000-25,000	22,500	0.29	6525	
25,000-30,000	27,500	0.26	7150	
30,000-35,000	32,500	0.13	4225	
35,000-40,000	37,500	0.02	750	
			$\overline{M}_w = 23,200$	

Degree of Polymerization, DP

DP = average number of repeat units per chain

$$DP = \frac{\overline{M}_n}{m}$$

where *m* = repeat unit molecular weight

Poly(vinyl chloride) (PVC)

Ex. problem 4.1b,

for PVC: m = 2(carbon) + 3(hydrogen) + 1(Clorine) (from front of book) = 2(12.011) + 3(1.008) + 1(35.45)= 62.496 g/mol

DP = 21,150 / 62.496 = 338.42

Polymer Chain Lengths

- Many polymer properties are affected by the length of the polymer chains. For example, the melting temperature increases with increasing molecular weight.
- At room temp, polymers with very short chains (roughly 100 g/mol) will exist as liquids.
- Those with weights of 1000 g/mol are typically waxy solids and soft resins.
- Solid polymers range between 10,000 and several million g/mol.
- The molecular weight affects the polymer's properties (examples: elastic modulus & strength).

- Straight (b) and twisted (c) chain segments are generated when the backbone carbon atoms (dark circles) are oriented as in the figure above.
- Chain bending and twisting are possible by rotation of carbon atoms around their chain bonds.
- Some of the polymer mechanical and thermal characteristics are a function of the chain segment rotation in response to applied stresses or thermal vibrations.

Chain End-to-End Distance, r

- Representation of a single polymer chain molecule that has numerous random kinks and coils produced by chain bond rotations; it is very similar to a heavily tangled fishing line.
- "r" is the end to end distance of the polymer chain which is much smaller than the total chain length.

- The physical characteristics of a polymer depend also on differences in the structure of the molecular chains (other variables are shape and weight).
- Linear polymers have repeat units joined end to end in single chains. There may be extensive van der Waals and hydrogen bonding between the chains. Examples: polyethylene, PVC, nylon.

- Where side-branch chains have connected to main chains, these are termed <u>branched polymers</u>. Linear structures may have side-branching.
- HDPE high density polyethylene is primarily a linear polymer with minor branching, while LDPE – low density polyethylene contains numerous short chain branches.
- Greater chain linearity and chain length tend to increase the melting point and improve the physical and mechanical properties of the polymer due to greater crystallinity.

- In <u>cross-linked</u> polymers, adjacent linear chains are joined to one another at various positions by covalent bonding of atoms. Examples are the rubber elastic materials.
- Small molecules that form 3 or more active covalent bonds create structures called <u>network</u> <u>polymers</u>. Examples are the epoxies and polyurethanes.

Thermoplastics and Thermosets

- The response of a polymer to mechanical forces at elevated temperature is related to its dominant molecular structure.
- One classification of polymers is according to its behavior and rising temperature. <u>Thermoplastics and Thermosets</u> are the 2 categories.
- A thermoplastic is a polymer that turns to a liquid when heated and freezes to a very glassy state when cooled sufficiently.
- Most thermoplastics are high-molecular-weight polymers whose chains associate through weak Van der Waals forces (polyethylene); stronger dipole-dipole interactions and hydrogen bonding (nylon).

Thermoplastics and Thermosets

- Thermoplastic polymers differ from thermosetting polymers (Bakelite, vulcanized rubber) since thermoplastics can be remelted and remolded.
- Thermosetting plastics when heated, will chemically decompose, so they can not be recycled. Yet, once a thermoset is cured it tends to be stronger than a thermoplastic.
- Typically, linear polymers with minor branched structures (and flexible chains) are thermoplastics. The networked structures are thermosets.

Examples of Thermoplastics

Table 4.3 A Listing of Repeat Units for 10 of the More Common Polymeric Materials

More Examples of Thermoplastics

http://www2.dupont.com/Teflon/en_US/index.html http://en.wikipedia.org/wiki/Teflon

Specific Thermoplastic Properties

	Tensile Strength (psi)	% Elongation	Elastic Modulus (psi)	Density (g/cm ³)	lzod Impact (ft lb/in.)
Polyethylene (PE):					
Low-density	3,000	800	40,000	0.92	9.0
High-density	5,500	130	180,000	0.96	4.0
Ultrahigh molecular weight	7,000	350	100,000	0.934	30.0
Polyvinyl chloride (PVC)	9,000	100	600,000	1.40	
Polypropylene (PP)	6,000	700	220,000	0.90	1.0
Polystyrene (PS)	8,000	60	450,000	1.06	0.4
Polyacrylonitrile (PAN)	9,000	4	580,000	1.15	4.8
Polymethyl methacrylate (PMMA) (acrylic, Plexiglas)	12,000	5	450,000	1.22	0.5
Polychlorotrifluoroethylene	6,000	250	300,000	2.15	2.6
Polytetrafluoroethylene (PTFE, Teflon)	7,000	400	80,000	2.17	3.0
Polyoxymethylene (POM) (acetal)	12,000	75	520,000	1.42	2.3
Polyamide (PA) (nylon)	12,000	300	500,000	1.14	2.1
Polyester (PET)	10,500	300	600,000	1.36	0.6
Polycarbonate (PC)	11,000	130	400,000	1.20	16.0
Polyimide (PI)	17,000	10	300,000	1.39	1.5
Polyetheretherketone (PEEK)	10,200	150	550,000	1.31	1.6
Polyphenylene sulfide (PPS)	9,500	2	480,000	1.30	0.5
Polyether sulfone (PES)	12,200	80	350,000	1.37	1.6
Polyamide-imide (PAI)	27,000	15	730,000	1.39	4.0

Thermoset data

Thermoset Properties

	Tensile Strength (psi)	% Elongation	Elastic Modulus (psi)	Density (g/cm³)
Phenolics	9,000	2	1300	1.27
Amines	10,000	1	1600	1.50
Polyesters	13,000	3	650	1.28
Epoxies	15,000	6	500	1.25
Urethanes	10,000	6		1.30
Silicone	4,000	0	1200	1.55

Specific Elastomeric Properties

Elastomers, often referred to as rubber, can be a thermoplastic or a thermoset depending on the structure. They are excellent for parts requiring flexiblity, strength and durability: such as automotive and industrial seals, gaskets and molded goods, roofing and belting, aircraft and chemical processing seals, food, pharmaceutical and semiconductor seals, and wire and cable coatings.

	Tensile Strength (psi)	% Elongation	Density (g/cm ³)
Polyisoprene	3000	800	0.93
Polybutadiene	3500		0.94
Polyisobutylene	4000	350	0.92
Polychloroprene (Neoprene)	3500	800	1.24
Butadiene-styrene (BS or SBR rubber)	3000	2000	1.0
Butadiene-acrylonitrile	700	400	1.0
Silicones	1000	700	1.5
Thermoplastic elastomers	5000	1300	1.06

Thermoplastic vs Thermoset

- Thermoplastics:
 - --little cross linking
 - --ductile
 - --soften with heating
 - --polyethylene polypropylene polycarbonate polystyrene

Molecular weight

- Thermosets:
 - --large cross linking (10 to 50% of mers)
 --hard and brittle
 --do NOT soften with heating
 --vulcanized rubber, epoxies, polyester resin, phenolic resin

Copolymers

two or more monomers polymerized together

- random A and B randomly positioned along chain
- alternating A and B alternate in polymer chain
- block large blocks of A units alternate with large blocks of B units
- graft chains of B units grafted onto A backbone

A — B -

Crystallinity in Polymers

- The crystalline state may exist in polymeric materials.
- However, since it involves molecules instead of just atoms or ions, as with metals or ceramics, the atomic arrangement will be more complex for polymers.
- There are ordered atomic arrangements involving molecular chains.
- Example shown is a polyethylene unit cell (orthorhombic).

Crystal Structures

Polymer	Crystal Structure	Lattice Parameters (nm)
Polyethylene	Orthorhombic	$a_0 = 0.742 \ b_0 = 0.495 \ c_0 = 0.255$
Polypropylene	Orthorhombic	$a_0 = 1.450 \ b_0 = 0.569 \ c_0 = 0.740$
Polyvinyl chloride	Orthorhombic	$a_0 = 1.040 \ b_0 = 0.530 \ c_0 = 0.510$
Polyisoprene (cis)	Orthorhombic	$a_0 = 1.246 \ b_0 = 0.886 \ c_0 = 0.810$

 $Fe_{3}C$ – iron carbide – orthorhombic crystal structure

The effect of temperature on the structure and behavior of thermoplastics.

Polymer Crystallinity

Polymers are rarely 100% crystalline

- Difficult for all regions of all chains to become aligned crystalline
- Degree of crystallinity expressed as % crystallinity.
 - -- Some physical properties depend on % crystallinity.
 - -- Heat treating causes crystalline regions to grow and % crystallinity to increase.

amorphous region

region

Plastic Recycling Symbols

In 1988 the Society of the Plastics Industry developed a numeric code to provide a uniform convention for different types of plastic containers.

These numbers can be found on the underside of containers.

- 1. PET; PETE (polyethylene terephthalate): plastic water and soda bottles.
- 2. HDPE (high density polyethylene): laundry/dish detergent
- 3. V (Vinyl) or PVC: Pipes, shower curtains
- 4. LDPE (low density polyethylene): grocery bags, sandwich bags
- 5. PP (polypropylene): Tupperware®, syrup bottles, yogurt cups,
- 6. PS (polystyrene): Coffee cups, disposable cutlery
- 7. Miscellaneous: any combination of 1-6 plastics

Paper or Plastic?

- We live in a plastic society.
- Everything around us is plastic.
- Could you go for a day without plastic?
- Toothbrush, clothing, food containers, cooking spatulas, pans, bottled water, automobile parts, bicycle parts, eye glasses, iPod, calculator, mouse, computer parts, printer, stapler, head phones, TV, clock, flash memory housing, usb connector, keyboard, shoes, backpack parts, cell phone, credit cards..

