

Atomic Layer Deposition

An Introduction to Theory and Applications

Eric Deguns Ph.D. October 4, 2011

Agenda

- Atomic Layer Deposition Overview
- History
- Applications
- Summary
- Cambridge NanoTech

Methods for Depositing Thin Films

Method	ALD	MBE	CVD	Sputter	Evapor	PLD	
Thickness Uniformity	good	fair	good	good	fair	fair	
Film Density	good	good	good	good	fair	good	
Step Coverage	good	poor	varies	poor	poor	poor	
Interface Quality	good	good	varies	poor	good	varies	
Low Temp. Deposition	good	good	varies	good	good	good	
Deposition Rate	fair	fair	good	good	good	good	
Industrial Applicability	varies	varies	good	good	good	poor	

The ALD Cycle

- ALD is a thin film deposition technique where precursors are sequentially introduced to the surface, where they react directly with the surface, to form sub-monolayers of film
- A single ALD cycle consists of the following steps:
 - 1) Exposure of the first precursor
 - 2) Purge or evacuation to remove by-products
 - 3) Exposure of the second precursor
 - 4) Purge or evacuation of the reaction chamber

ALD Deposits Thin Inorganic Films

Benefits of ALD

100 nm Al₂O₃ coating on Si wafer

Perfect films

- Digital control of film thickness
- Excellent repeatability
- High film density
- Amorphous or crystalline films
- Ultra thin films: <10nm possible

Conformal Coating

- Perfect 3D conformality
- Ultra high aspect ratio (>2,000:1)
- Large area thickness uniformity
- Atomically flat and smooth coating

Challenging Substrates

- Gentle deposition process for sensitive substrates
- Low temperature and low stress
- Excellent adhesion
- Coats challenging substrates even teflon

Typical ALD Film thickness 10 Å – 2000 Å

ALD is a Two-Part Reaction

ALD Films

- Films deposited with digital control of thickness; "built layer-by layer"
- Each film has a characteristic growth rate for a particular temperature

Oxides

 Al_2O_3 , HfO_2 , La_2O_3 , SiO_2 , TiO_2 , ZnO, ZrO_2 , Ta_2O_5 , In_2O_3 , SnO_2 , ITO, FeO_x , NiO_2 , MnO_x , Nb_2O_5 , MgO, Er_2O_{3} , WO_x

Nitrides

WN, Hf₃N₄, Zr₃N₄, AIN, TiN, TaN, NbN_x

Metals

Ru, Pt, W, Ni, Co, Pd, Rh, Cu

Sulphides

ZnS, SnS, Cu₂S

ALD Periodic Table

Periodic Table | ALD Films

H		O:Oxide C:Carbide N:Nitride F:Flouride															He 2
Li 3	Be 4	M:Metal D:Dopant P:Phosphide/Asenide S:Sulphide/Selenide/Telluride										O N B 5	C 6	N 7	O 8	F 9	N∈
Na 11	Mg 12 F		Oxide of thi Recipe for t			-			se			O N M P AI 13	ON M Si 14	P 15	S 16	CI 17	Ar 18
K 19	Ca s	Sc 21	Ti S	V 23	Cr 24	Mn S 25 D	Fe 26	O N M Co 27	Ni Ni 28	ONM Cu 29 S	Zn 30 S	O N Ga P 31	Ge 32	As 33	Se 34	Br 35	Kr 36
Rb 37	O Sr 38 S	O Y 39	2r 40	Nb 41	O N M MO 42	Tc 43	O M Ru 44	O M Rh 45	Pd 46	Ag 47	Cd 48 S	O N P 1n P 49 S	Sn 50 S	O M Sb 51	Te 52	 53	X∈ 54
Cs 55	0 Ba 56	La 57 S F	M Hf 72 S F	ON M Ta 73	W 74	Re 75	Os 76	0 M Ir 77	O M Pt 78	Au 79	Hg s	TI 81	Pb 82 S	O Bi 83	Po 84	At 85	Rr 86
Fr 87	Ra 88	Ac 89	Rf 104	Db 105	Sg 106	Bh 107	Hs 108	Mt 109									

Ce 58	O Pr 59	Nd 60	Pm 61	Sm 62	Eu 63	Gd 64	O Tb 65	Dy 66	Ho 67	Er 68	O Tm 69	Yb 70	Lu 71
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	92	93	94	95	96	97	98	100	101	102	104	4	4

Applications for ALD

Optical

Antireflection **Optical filters OLED layers** Photonic crystals Transparent conductors Electroluminescence Solar cells Lasers Integrated optics **UV** blocking Colored coatings

Semi / **Nanoelectronics**

Flexible electronics Gate dielectrics Gate electrodes Metal Interconnects Diffusion barriers **DRAM** Multilayer-capacitors Read heads

MEMS

Etch resistance Hydrophobic / antistiction

Chemical

Catalysis Fuel cells

Other applications

Internal tube liners Nano-glue Biocompatibility Magnetic materials

Wear resistant

Blade edges Molds and dies Solid lubricants Anti corrosion

Nanostructures

Inside pores **Nanotubes** Around particles **AFM** tips Graphene functionalization

ALD History

1950-1962: "Molecular Layering" Prof. S.I. Kol'tsov and Prof. V.B. Aleskovskii, Russia

1972: "Atomic Layer Epitaxy": Dr. T. Suntola, Finland

Mid 1970-1980s: Thin Film Electroluminescent Displays

Mass produced using "ALE" ZnS

1980s-1990s: "Dark Ages of ALD"

Mid 1990s: research interest in ALD renewed – Microlectronics

Early 2000s: HDD Write heads

2007: Intel 45nm High-K

ALD For Microelectronics

32nm Planar Transistor

22nm 3-D Transistor

ALD For Microelectronics

High-K

HfO₂, ZrO₂, Al₂O₃, SiO₂, HfSiO, ZrSiO...

Diffusion Barrier

Step coverage of batch ALD TiN film in 32:1 trenches

TiN, TaN, TaCN, WN, WC_xN_y, Ru, TiSiN...

Glue/Seed Layer

Ru, Cu, Mn, Pd

Applications for ALD

Optical

Antireflection
Optical filters
OLED layers
Photonic crystals
Transparent conductors
Electroluminescence
Solar cells
Lasers
Integrated optics
UV blocking
Colored coatings

Semi / Nanoelectronics

Flexible electronics
Gate dielectrics
Gate electrodes
Metal Interconnects
Diffusion barriers
DRAM
Multilayer-capacitors
Read heads

MEMS

Etch resistance Hydrophobic / antistiction

Chemical

Catalysis Fuel cells

Other applications

Internal tube liners Nano-glue Biocompatibility Magnetic materials

Wear resistant

Blade edges Molds and dies Solid lubricants Anti corrosion

Nanostructures

Inside pores
Nanotubes
Around particles
AFM tips
Graphene functionalization

Variety of Films Possible

- (A) Doped films: single "layers" of dopant film in between bulk
- (B) Nanolaminate Films: stacks of alternating layers
- (C) Graded films: composition slowly changes from material A to material B

Tunable Film Properties

Main Film component:

 $Sn(NMe_2)_4 + O_3 \rightarrow SnO_2$

Dopant:

$$AIMe_3 + H_2O \rightarrow Al_2O_3$$

- Electrical resistivity tunable
- Films behave as bulk, doped films
- No post-deposition activation

ALD for TCOs

- Current "gold standard" TCOs are F:SnO₂ or ITO; low resistivity, high transparency
- Both ITO and ZnO:D systems can be tuned for optical transparency, substrate effects

Libera, J.A. Elam, J.W. 2011 Chem Mater. ASAP.

ALD for Moisture Barriers

- Improved performance water and oxygen barrier by using nanolaminate layers of 5nm Al₂O₃ and ZrO₂
- Water Vapor Transmission Rate (WVTR) <10⁻⁶
 g/m² day demonstrated

Advanced Materials 2009, 21, 1845-1849

Flexible Electronics

OLEDs

Flexible Solar

ePaper

Low Cost Electronics (Jet-Printed)

MEMS - ALD is a good fit...

Micro Electromechanical Systems

- Billion dollar market CURRENTLY
- Pressure sensors, accelerometers, blood pressure, displays...
- ALD MEMS applications: conformal dielectric, lubrication / antistiction, anti-wear, thermionic layer, encapsulation

MEMS - Encapsulation Films

Different Types of Hermetic Sealing

ALD Layer acts as supplement to **bonding** layer

ALD Layer acts as supplement to *encapsulating* layer

ALD Layer is the *encapsulating* blanket layer

- Different type of hermetic sealing based on different device architecture
- ALD "blanket" layer can act as anti-stiction, dielectric, etc. layer as well as hermetic layer

Low Temperature ALD

- Some ALD processes can deposit films < 150°C: Al₂O₃, HfO₂, SiO₂, TiO₂, ZnO, ZrO₂, Ta₂O₅, SnO₂, Nb₂O₅, MgO, In₂O₃
- With plasma, also add, Pt, Ru, Pd, Cu....
- Ideal for merging organics with inorganics
- Compatible with photoresist, plastics, biomaterials

Morpho Peleides butterfly

Huang J. Y. Nano Letters. 2006, 6, 2325

ALD for Flexible Electronics

- High quality HfO₂ gate dielectric, deposited at 100°C
- Low stress film flexible

Advanced Functional Materials, **2006**, 16, 2355-2362. Nature, **2008**, 454, 495-500.

large capacitance (up to ca. 330 nF cm⁻²), and low leakage current (ca. 10⁻⁸ A cm⁻²)

ALD - Solar Cells

Silicon

Thin Film

Organic PV

Silicon Solar Cell Passivation

ALD Al₂O₃ passivation removes defects of dangling bonds on Si

Helps prevent surface recombination

Backside passivation of Si solar cells

Al₂O₃ acts as a surface passivation layer in silicon solar cells*
 → Higher efficiency → Thinner wafers → lower costs/W_p

Silicon Solar Cell Passivation

- High electron-hole pair lifetime τ_{eff} is essential to allow diffusion to the surfaces
- Surface passivation on the back is essential when decreasing solar cell thickness
- · Current technology (Al BSF) yields only ~1000 cm/s on the back side!

- · c-Si surface can effectively be passivated by Al₂O₃
- Al₂O₃ exhibits low interface density
- Al₂O₃ has a high amount of negative built-in charge (~1012-1013 cm-2)

Silicon Solar Cells

- Highly doped p-type or n-type c-Silicon solar cells
- Chemical passivation (interface trap density) dangling bonds (SiO₂ or SiN_x passivates)
- Field effect passivation (negative fixed charge in Al₂O₃) passivates SiO- at the Si-SiO₂

Thin Film Solar Cells

- Thin film solar cells can have higher efficiencies than silicon cells >28% for single junction in natural sunlight
- Substrate can also be metal foil, polymer,
 glass cheaper than c-Si
- But there are some issues....

Figure 10. Solar spectrum and response of CIGS materials, showing possibilities for multi-junction solar cells.

Thin Film Solar Cells

Key feature: Absorber / Buffer / TCO combination determine spectral capture range ALD Insertion points:

- TCO layer
- Encapsulation
- buffer layer: replacement for CdS

Cross section TEM image of a CIGS solar cell with ALD grown Zn(O,S) buffer layer. The buffer layer is the dark band between the CIGS grains and the columnar ZnO:Al front contact layer. The dark area to the right is a void.

Quantum efficiency measurement for a cell with ALD Zn(O,S) buffer layer and a reference cell with CdS buffer.

Dye Sensitized Solar Cells (DSSC)

Dye-Sensitized Solar Cell Schematic

DSSCs still have comparably low efficiency compared to thin film / c-Si solar cells

Many interfaces require optimization in DSSCs:

How can ALD help?

Tune interface of dye/photoanode:

- suppress recombination

Prasittichai, C.; Hupp, J. T. *J Phys Chem Lett.* **2010**, *1*, 1611. Bills, B., Shanmugam, M., et a. MRS Symp. *Proc. 2010*, *v*ol. 1260.

Novel photoanode

Hamann, T. W.; Martinson, A. B. F.; Elam, J. W.; Pellin, M. J.; Hupp, J. T *J. Phys Chem. C.* **2008**, *112*, 10303

Novel structure to minimize electron transfer distance

Silica Aerogel - Li, T. C., et al. *J Phys Chem. C.* **2011**, *115*, 11257-11264. AAOs - Martinson, A. B. F., Hamann, T. W., Pellin, M. J., & Hupp, J. T. *Chem. Euro J.* **2008**, *14*, 445

Current Li-ion Battery Limitations

Lithium ion batteries are promising but current issues prevent need to be addressed

- 1. Specific charge capacity decreases rapidly with number of charge-discharge cycles
- 2. Slow charge up time
 - Fast charge or discharge can result in damage to the electrode material
- 3. Safety issues with liquid electrolyte being exposed to
 - Lithium electrolyte is pyrophoric

Continuous fast charging alters microstructure of cathode/anode

- 4. Low power density
 - Large batteries are cumbersome for increasingly smaller consumer devices

Li Ion Batteries

Can ALD help increase cycle lifetime?

Anode – cathode separator is a thin plastic membrane coated with ceramic paste;

- typically 30-40% of total cost of Li-ion battery,
- Failure mechanism loss of charge capacity due to fouling of membrane
- Li ions cannot effectively move across separator after cycling

Can ALD layers replace the ceramic paste in the separator to reduce fouling / plugging?

Li Ion Batteries

ALD layers help to improve long term specific charge capacity

- Prevent corrosion of cathode with thin ${\rm Al_2O_3}$ layer

ALD Al₂O₃ films (2-8 cycles) improve the capacity retention of cathode material, LiCoO₂, from 45% to 89% after repeated cycling

Y.S Yung et al. J. Electrochem. Soc. 2010, 157, A75-A81.

Lee, J. T.; Wang, F. M.; Cheng, C. S.; Li, C. C.; Lin, C. H. *Electrochimica Acta* **2010**, *55*, 4002.

Interface engineering is possible by ALD

Li Ion Batteries

ALD layers <u>directly</u> improve specific charge capacity by improved performance of cathode

Typically, charge capacity decreases after first charge/discharge cycle.

A few cycles of ALD Al₂O₃ increases charge capacity after first cycle: Formation of thin and stable SEI layer is enhanced by ALD Al₂O₃ - LiAlO₂ forms after first charge/discharge cycle; helps to lower energy barrier for Li diffusion into and out of anode

- Al₂O₃ helps to improve mechanical stability as well as corrosion resistance, SEI layer

Xiao, X., Lu, P., & Ahn, D. *Adv. Mat.* **2011** *ASAP* doi:10.1002/adma.201101915

Cycled Silicon Anode

Uncoated
(e)

Solar Energy Harvesting

Issues with Solar Energy:

IT GETS DARK AT NIGHT

Can we develop a strategy to harvest energy and store it to do work later?

Photocatalysts for water oxidation

$$H_2O + hv \rightarrow O_2 + H_2$$

- Strong absorption in the visible range
- Separate charges using absorbed photons
- Collect and transport charges for oxidation reaction
- -Difficult to find materials which do all of these things
- -Good photoabsorbers (Fe₂O₃, Cu₂O, TiO₂, WO₃) have short charge diffusion lengths

ALD Photocathodes

Use nanostructures to create new materials: overcome charge diffusion issues

Photocurrent of 2.7 mA/cm² using Fe₂O₃; quantum efficiency 46% at λ = 400 nm (without OEC)

Fe₂O₃ - Lin, Y.; Zhou, S.; Sheehan, S. W.; Wang, D. *J. Am. Chem. Soc.* **2011**, 133(8), 2398-401 WO₃ - Liu, R., Lin, Y., Chou, L.-Y., Sheehan, S. W., He, W., Zhang, F., et al. *Angew. Chem. Int. Ed.* **2011**, 3(3), 499-502. TiO₂ - Lin, Y., Zhou, S., Liu, X., Sheehan, S., & Wang, D. *J. Am. Chem. Soc.* **2009**, *131*(8), 2772-3.

ALD Improved Photocatalysts

ALD layers used for interface control:

- repairs defects in electrodeposited Cu₂O surface;
- prevents degradation to cathode material;
- improves performance of device

ALD TiO₂ helps prevent corrosion /degradation of Cu₂O ALD ZnO:Al films used as photon extraction layer

Highest recorded photo current 7.6 mA / cm² Photon-to-current efficiency was 40% between 350 and 480 nm TiO₂ ZnO:Al Pt
Cu₂O
Au

Paracchino, A. Laporte, V.; Sivula, K.; Grätezel, M.; Thimsen, E. *Nat. Mater* **2011**, *10*, 457.

Pt nanodot (hydrogen evolving catalyst) also possible by ALD; as are other layers i.e.) MnO_x

Ru Nucleation - Nanodots

- Nucleation of Ru is substrate dependent
- Allows for formation of nanodots;
 diameters of ~1-2nm, 5-10
 atoms across
- Takes advantage of slow nucleation of Ru on oxide
- film will become continuous with enough cycles

40nm scale bar. 10nm in inset

Interesting applications for catalysis – controlled "active sites" with size distribution

Textiles

Wool fabric coated with ALD TiO₂

EDS X-ray map of the wool

- Spill resistant fabrics SAMs hydrophobic coatings
- High moisture absorbancy fabric (sportswear) SAMs Hydrophilic coating
- Abrasion resistant fabrics Al₂O₃ coatings
- Anti-microbial coatings TiO₂ coating

Macroscopic Coatings

Drill bits with ZrO₂ coatings

MLD: SAMs: 2-D Self-Assembly

- Self-assembly in liquid or vapor phase driven by amphiphilic character of the molecules
- Ordered molecular 2D assemblies formed spontaneously by the chemisorption of the head group to a substrate.
- Head group
 - Affinity to substrate to induce chemisorbed surface reactions
 - High energy chemical bound (100 kJ/mol) provides molecular stability (thermal, chemical, biological)
- Tail group
 - Closed-packed structure driven by Van der Waals interaction between alkyl chains
- Functional group
 - Defines properties of monolayer, e.g., hydrophobicity/hydrophilicity, affinity to anchor with biological entities

PEG hydrophilic coating on Nylon

Tuning coating performance by combining ALD and SAMs

- Precursor: 2Methoxy(polyethyleneoxy)propyl)trimethoxylsilane
- Source @ 100°C, Reactor 50°C
- Sample: Nylon12
- Sample prep: Al₂O₃ ALD seed layer deposited at 50°C
- Result: nylon made more hydrophilic by combination of ALD+ polyethylene glycol coating

ALD for Memristor

- No energy required to store data
- 3-D structure (can be stacked on top of each other)
- Memristive material changes states (based on oxygen vacancies for oxides)
- Many different logic states: not just 0:1

ALD Memristive materials: HfO₂, TiO₂, V₂O₅, WO₃, Cu₂S

Different Oxygen Vacancies: Different Logic States

0: MO_x
1: MO_{x-0.5}
2: MO_{x-1}
3: MO_{x-1.5}
4: MO_{x-2}

Summary

- Interest in ALD remains strong from the microelectronics industry
 - High-K gate oxides, metallization, "zero-thickness" barrier layers
 - Novel device structures
 - Low cost, printed or flexible electronics
- Applications such as lighting /displays, solar, energy storage, anticorrosion/anti-wear, biocompatibility are large opportunities for using ALD
- Much research left to be done:
 - Novel precursors for new ALD films
 - Nanolaminates / doped films
 - Plasma-enhanced ALD

Cambridge NanoTech

- Founded in 2003 by Dr. Jill Becker
- Located in Cambridge, MA
- Grew directly out of Gordon Lab at Harvard University
- Dedicated to advancing the science and technology of ALD
- Multiple ALD product lines serving many applications and industries
- Rapid response to custom applications and projects
- Full staff of Ph.D. research scientists
- Strategic partnerships deliver complete ALD solution

ALD Systems

The Promise of ALD

ALD Applications

For application and process help: support@cambridgenanotech.com