Vai al contenuto principale
Moodle@Units
  • Home
  • Corsi
    Tutti i corsi Fisica Ingegneria e Architettura Matematica e Geoscienze Scienze Chimiche e Farmaceutiche Scienze Economiche, Aziendali, Matematiche e Statistiche Scienze della Vita Scienze Giuridiche, del Linguaggio, dell`Interpretazione e della Traduzione Scienze Politiche e Sociali Studi Umanistici Universitario Clinico di Scienze mediche, chirurgiche e della salute E-learning@Units Centro Linguistico di Ateneo Sistema Bibliotecario di Ateneo Amministrazione Centrale Corsi supplementari PhD - Formazione trasversale La ricerca all'Università di Trieste Guide a Moodle Servizi Disabili e DSA Percorso universitario iniziale dei docenti delle scuole secondarie di primo e secondo grado
  • Supporto
    Guida a Moodle per studenti Guida a Moodle per docenti Pagina del supporto tecnico Informativa dati personali
  • Altro
Italiano ‎(it)‎
English ‎(en)‎ Italiano ‎(it)‎
Ospite
Accedi
Moodle@Units
Home Corsi Minimizza Espandi
Tutti i corsi Fisica Ingegneria e Architettura Matematica e Geoscienze Scienze Chimiche e Farmaceutiche Scienze Economiche, Aziendali, Matematiche e Statistiche Scienze della Vita Scienze Giuridiche, del Linguaggio, dell`Interpretazione e della Traduzione Scienze Politiche e Sociali Studi Umanistici Universitario Clinico di Scienze mediche, chirurgiche e della salute E-learning@Units Centro Linguistico di Ateneo Sistema Bibliotecario di Ateneo Amministrazione Centrale Corsi supplementari PhD - Formazione trasversale La ricerca all'Università di Trieste Guide a Moodle Servizi Disabili e DSA Percorso universitario iniziale dei docenti delle scuole secondarie di primo e secondo grado
Supporto Minimizza Espandi
Guida a Moodle per studenti Guida a Moodle per docenti Pagina del supporto tecnico Informativa dati personali
Espandi tutto Minimizza tutto
  1. 452SM - DEEP LEARNING 2020
  2. Part I
  3. Homework 4

Homework 4

Aggregazione dei criteri
Aperto: giovedì, 25 marzo 2021, 00:00
Termine consegna giovedì, 8 aprile 2021, 00:00

Instructions:
As always, please provide your solution in a Jupyter Notebook.

  1. Now that you have all the tools to train an MLP with high performance on MNIST, try reaching 0-loss (or 100% accuracy) on the training data (with a small epsilon, e.g. 99.99% training performance -- don't worry if you overfit!). The implementation is completely up to you. You just need to keep it an MLP without using fancy layers (e.g., keep the Linear layers, don't use Conv1d or something like this, don't use attention). You are free to use any LR scheduler or optimizer, any one of batchnorm/groupnorm, regularization methods... If you use something we haven't seen during lectures, please motivate your choice and explain (as briefly as possible) how it works.
  2. Try reaching 0-loss on the training data with permuted labels. Assess the model on the test data (without permuted labels) and comment. Help yourself with 3. Tip: To permute the labels, act on the trainset.targets with an appropriate torch function. Then, you can pass this "permuted" Dataset to a DataLoader like so: trainloader_permuted = torch.utils.data.DataLoader(trainset_permuted, batch_size=batch_size_train, shuffle=True). You can now use this DataLoader inside the training function. Additional view for motivating this exercise:
    "The statistical significance perfect linear separation", by Jared Tanner (Oxford U.)
    .
P.S. I increased the number of files to upload from 1 to 5, so if you want you may include up to 4 local image files in your solution.

Contatta il supporto
Ospite (Accedi)
Ottieni l'app mobile
Powered by Moodle