Vai al contenuto principale
Moodle@Units
  • Home
  • Corsi
    Tutti i corsi Fisica Ingegneria e Architettura Matematica e Geoscienze Scienze Chimiche e Farmaceutiche Scienze Economiche, Aziendali, Matematiche e Statistiche Scienze della Vita Scienze Giuridiche, del Linguaggio, dell`Interpretazione e della Traduzione Scienze Politiche e Sociali Studi Umanistici Universitario Clinico di Scienze mediche, chirurgiche e della salute E-learning@Units Centro Linguistico di Ateneo Sistema Bibliotecario di Ateneo Amministrazione Centrale Corsi supplementari PhD - Formazione trasversale La ricerca all'Università di Trieste Guide a Moodle Servizi Disabili e DSA Percorso universitario iniziale dei docenti delle scuole secondarie di primo e secondo grado
  • Supporto
    Guida a Moodle per studenti Guida a Moodle per docenti Pagina del supporto tecnico Informativa dati personali
  • Altro
Italiano ‎(it)‎
English ‎(en)‎ Italiano ‎(it)‎
Ospite
Accedi
Moodle@Units
Home Corsi Minimizza Espandi
Tutti i corsi Fisica Ingegneria e Architettura Matematica e Geoscienze Scienze Chimiche e Farmaceutiche Scienze Economiche, Aziendali, Matematiche e Statistiche Scienze della Vita Scienze Giuridiche, del Linguaggio, dell`Interpretazione e della Traduzione Scienze Politiche e Sociali Studi Umanistici Universitario Clinico di Scienze mediche, chirurgiche e della salute E-learning@Units Centro Linguistico di Ateneo Sistema Bibliotecario di Ateneo Amministrazione Centrale Corsi supplementari PhD - Formazione trasversale La ricerca all'Università di Trieste Guide a Moodle Servizi Disabili e DSA Percorso universitario iniziale dei docenti delle scuole secondarie di primo e secondo grado
Supporto Minimizza Espandi
Guida a Moodle per studenti Guida a Moodle per docenti Pagina del supporto tecnico Informativa dati personali
Espandi tutto Minimizza tutto
  1. 452SM - DEEP LEARNING 2020
  2. Part I
  3. Keynote 1 Homework

Keynote 1 Homework

Aggregazione dei criteri
Aperto: lunedì, 29 marzo 2021, 00:00

As discussed during the lecture, given the difficulty of this homework, there is no imminent due date.
If you wish to do this homework, we only ask to submit your implementations ~7 days before your final examination.
NB: (§§§) indicates a hard exercise, (§§) a moderately hard exercise

Reproduce the "Sanity Check for Similarity Indexes" from page 6 of Similarity of Neural Network Representations Revisited) for the case of Multilayer Perceptrons (MLPs):

1. Start from a MLP with an architecture of your choice.
         a. (extra 1) The architecture must be such that it reaches more than 98% of test-set accuracy on average
             i. Test that the threshold is reached with an appropriate test statistic

2. (§§) Build a function to extract representations from each layer after the application of its activation function (e.g. 5 layers w/ relu + output layer: extract representation after ReLU for the 5 hidden layers + representation for the output)

3. Operate a pairwise layer comparison for each layer in the architecture at least for 2 parameters sets (i.e., 2 networks trained from different initialization)
     a. Use both CKA and SVCCA

4. (§§§) (extra 2) Fix the layer_sim library such that it is possible to retain the gradient of the representations (you'll need to call `backward` inside the routine for building representations [or call it outside, it's up to you to find a suitable method to obtain it]. You can do it either on the loss or check Similarity of Neural Networks with Gradients for additional tricks) and implement CKA with the incorporation of gradient flow.
     a. See how this metric compares to *vanilla* CKA

Contatta il supporto
Ospite (Accedi)
Ottieni l'app mobile
Powered by Moodle