data { // The input data are: // the sample size (constrain to be >= 1) // the vector 'complaints' (of length 'N') // the vector 'traps' (of length 'N') } parameters { // Our model accepts two parameters 'alpha' and 'beta' } model { // weakly informative priors: // we expect negative slope on traps and a positive intercept, // so for alpha a N(log(4), 1) and for beta a N(-0.25, 1) // likelihood: Consider poisson_log(eta), which is more efficient and stable alternative to poisson(exp(eta)) }