








Contents

CREDITS

INTRODUCTION

Part	One	
What	Is	Learning?

CHAPTER	1	Seven	Definitions	of	Learning
CHAPTER	2	Why	Our	Brain	Learns	Better	Than
Current	Machines

Part	Two	
How	Our	Brain	Learns

CHAPTER	3	Babies’	Invisible	Knowledge
CHAPTER	4	The	Birth	of	a	Brain
CHAPTER	5	Nurture’s	Share
CHAPTER	6	Recycle	Your	Brain

Part	Three	
The	Four	Pillars	of	Learning

CHAPTER	7	Attention
CHAPTER	8	Active	Engagement
CHAPTER	9	Error	Feedback

kindle:embed:0003?mime=image/jpg
kindle:embed:0003?mime=image/jpg


CHAPTER	10	Consolidation

CONCLUSION	Reconciling	Education	with
Neuroscience

ILLUSTRATIONS

ACKNOWLEDGMENTS

NOTES

BIBLIOGRAPHY

INDEX



About	the	Author

Stanislas	Dehaene	is	one	of	Europe’s	leading
neuroscientists,	and	for	over	thirty	years	he	has	been
studying	how	education	changes	our	brains.	He	is
professor	of	Experimental	Cognitive	Psychology	at	the
Collège	de	France,	and	director	of	NeuroSpin	brain
imaging	in	Saclay.	He	is	a	member	of	seven	academies
and	has	received	several	international	prizes,	including
the	highest	award	in	neuroscience,	the	Brain	Prize.
Dehaene’s	previous	books,	which	have	been	translated
into	fifteen	languages,	include	Consciousness	and	the
Brain,	Reading	in	the	Brain	and	The	Number	Sense.



ALSO	BY	STANISLAS	DEHAENE

Consciousness	and	the	Brain:	
Deciphering	How	the	Brain	Codes	Our	Thoughts

Reading	in	the	Brain:	
The	New	Science	of	How	We	Read

The	Number	Sense:	
How	the	Mind	Creates	Mathematics



For	Aurore,	who	was	born	this	year,
and	for	all	those	who	once	were

babies.



Begin	by	making	a	more	careful	study
of	your	pupils,	for	it	is	clear	that	you
know	nothing	about	them.

Jean-Jacques	Rousseau,	Emile,	or	On
Education	(1762)

This	is	a	strange	and	amazing	fact:	we
know	every	nook	and	cranny	of	the
human	body,	we	have	catalogued
every	animal	on	the	planet,	we	have
described	and	baptized	every	blade	of
grass,	but	we	have	left	psychological
techniques	to	their	empiricism	for
centuries,	as	if	they	were	of	lesser
importance	than	those	of	the	healer,
the	breeder	or	the	farmer.

Jean	Piaget,	“La	pédagogie
moderne”	(1949)

If	we	don’t	know	how	we	learn,	how	on
earth	do	we	know	how	to	teach?

L.	Rafael	Reif,	president	of	MIT
(March	23,	2017)
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Introduction

IN	SEPTEMBER	2009,	AN	EXTRAORDINARY	CHILD	FORCED	ME
TO	DRASTICALLY	revise	my	ideas	about	learning.	I	was
visiting	the	Sarah	Hospital	in	Brasilia,	a	neurological
rehabilitation	center	with	a	white	architecture	inspired
by	Oscar	Niemeyer,	with	which	my	laboratory	has
collaborated	for	about	ten	years.	The	director,	Lucia
Braga,	asked	me	to	meet	one	of	her	patients,	Felipe,	a
young	boy	only	seven	years	old,	who	had	spent	more
than	half	his	life	in	a	hospital	bed.	She	explained	to	me
how,	at	the	age	of	four,	he	had	been	shot	in	the	street
—unfortunately	not	such	a	rare	event	in	Brazil.	The	stray
bullet	had	severed	his	spinal	cord,	thus	rendering	him
almost	completely	paralyzed	(tetraparetic).	It	also
destroyed	the	visual	areas	of	his	brain:	he	was	fully
blind.	To	help	him	breathe,	an	opening	was	made	in	his
trachea,	at	the	base	of	his	neck.	And	for	over	three
years,	he	had	been	living	in	a	hospital	room,	locked
within	the	coffin	of	his	inert	body.
In	the	corridor	leading	to	his	room,	I	remember

bracing	myself	at	the	thought	of	having	to	face	a
broken	child.	And	then	I	meet	…	Felipe,	a	lovely	little
boy	like	any	other	seven-year-old—talkative,	full	of	life,
and	curious	about	everything.	He	speaks	flawlessly	with



an	extensive	vocabulary	and	asks	me	mischievous
questions	about	French	words.	I	learn	that	he	has
always	been	passionate	about	languages	and	never
misses	an	opportunity	to	enrich	his	trilingual	vocabulary
(he	speaks	Portuguese,	English,	and	Spanish).	Although
he	is	blind	and	bedridden,	he	escapes	into	his
imagination	by	writing	his	own	novels,	and	the	hospital
team	has	encouraged	him	in	this	path.	In	a	few	months,
he	learned	to	dictate	his	stories	to	an	assistant,	then
write	them	himself	using	a	special	keyboard	connected
to	a	computer	and	sound	card.	The	pediatricians	and
speech	therapists	take	turns	at	his	bedside,
transforming	his	writings	into	real,	tactile	books	with
embossed	illustrations	that	he	proudly	sweeps	with	his
fingers,	using	the	little	sense	of	touch	that	he	has	left.
His	stories	speak	of	heroes	and	heroines,	mountains
and	lakes	that	he	will	never	see,	but	that	he	dreams	of
like	any	other	little	boy.
Meeting	with	Felipe	deeply	moved	me,	and	also

persuaded	me	to	take	a	closer	look	at	what	is	probably
the	greatest	talent	of	our	brain:	the	ability	to	learn.	Here
was	a	child	whose	very	existence	poses	a	challenge	to
neuroscience.	How	do	our	brain’s	cognitive	faculties
resist	such	a	radical	upheaval	of	their	environment?
Why	could	Felipe	and	I	share	the	same	thoughts,	given
our	extraordinarily	different	sensory	experiences?	How
do	different	human	brains	converge	on	the	same



concepts,	almost	regardless	of	how	and	when	they
learn	them?
Many	neuroscientists	are	empiricists:	together,	with

the	English	Enlightenment	philosopher	John	Locke
(1632–1704),	they	presume	that	the	brain	simply	draws
its	knowledge	from	its	environment.	In	this	view,	the
main	property	of	cortical	circuits	is	their	plasticity,	their
ability	to	adapt	to	their	inputs.	And,	indeed,	nerve	cells
possess	a	remarkable	ability	to	constantly	adjust	their
synapses	according	to	the	signals	they	receive.	Yet	if
this	were	the	brain’s	main	drive,	my	little	Felipe,
deprived	of	visual	and	motor	inputs,	should	have
become	a	profoundly	limited	person.	By	what	miracle
did	he	manage	to	develop	strictly	normal	cognitive
abilities?
Felipe’s	case	is	by	no	means	unique.	Everybody

knows	the	story	of	Helen	Keller	(1880–1968)	and	Marie
Heurtin	(1885–1921),	both	of	whom	were	born	deaf	and
blind	and	yet,	after	years	of	grueling	social	isolation,
learned	sign	language	and	ultimately	became	brilliant
thinkers	and	writers.1 	Throughout	these	pages,	we	will
meet	many	other	individuals	who,	I	hope,	will	radically
alter	your	views	on	learning.	One	of	them	is	Emmanuel
Giroux,	who	has	been	blind	since	the	age	of	eleven	but
became	a	top-notch	mathematician.	Paraphrasing	the
fox	in	Antoine	de	Saint-Exupéry’s	The	Little	Prince
(1943),	Giroux	confidently	states:	“In	geometry,	what	is



essential	is	invisible	to	the	eye.	It	is	only	with	the	mind
that	you	can	see	well.”	How	does	this	blind	man
manage	to	swiftly	navigate	within	the	abstract	spaces	of
algebraic	geometry,	manipulating	planes,	spheres,	and
volumes	without	ever	seeing	them?	We	will	discover
that	he	uses	the	same	brain	circuits	as	other
mathematicians,	but	that	his	visual	cortex,	far	from
remaining	inactive,	has	actually	repurposed	itself	to	do
math.
I	will	also	introduce	you	to	Nico,	a	young	painter

who,	while	visiting	the	Marmottan	Museum	in	Paris,
managed	to	make	an	excellent	copy	of	Monet’s	famous
painting	Impression,	Sunrise	(see	figure	1	in	the	color
insert).	What	is	so	exceptional	about	this?	Nothing,
besides	the	fact	that	he	accomplished	it	with	only	a
single	hemisphere,	his	left	one—the	right	half	of	his
brain	was	almost	fully	removed	at	the	age	of	three!
Nico’s	brain	learned	to	squeeze	all	his	talents	into	half	a
brain:	speech,	writing,	and	reading,	as	usual,	but
drawing	and	painting	too,	which	are	generally	thought
to	be	functions	of	the	right	hemisphere,	and	also
computer	science	and	even	wheelchair	fencing,	a	sport
in	which	he	has	reached	the	rank	of	champion	in	Spain.
Forget	everything	you	were	told	about	the	respective
roles	of	both	hemispheres,	because	Nico’s	life	proves
that	anyone	can	become	a	creative	and	talented	artist



without	a	right	hemisphere!	Cerebral	plasticity	seems	to
work	miracles.
We	will	also	visit	the	infamous	orphanages	of

Bucharest	where	children	were	left	from	birth	in	quasi-
abandon—and	yet,	years	later,	some	of	them,	adopted
before	the	age	of	one	or	two,	have	had	almost	normal
school	experiences.
All	these	examples	illustrate	the	extraordinary

resilience	of	the	human	brain:	even	major	trauma,	such
as	blindness,	the	loss	of	a	hemisphere,	or	social
isolation,	cannot	extinguish	the	spark	of	learning.
Language,	reading,	mathematics,	artistic	creation:	all
these	unique	talents	of	the	human	species,	which	no
other	primate	possesses,	can	resist	massive	injuries,
such	as	the	removal	of	a	hemisphere	or	the	loss	of	sight
and	motor	skills.	Learning	is	a	vital	principle,	and	the
human	brain	has	an	enormous	capacity	for	plasticity—to
change	itself,	to	adapt.	Yet	we	will	also	discover
dramatic	counterexamples,	where	learning	seems	to
freeze	and	remain	powerless.	Consider	pure	alexia,	the
inability	to	read	a	single	word.	I	have	personally	studied
several	adults,	all	of	whom	were	excellent	readers,	who
had	a	tiny	stroke	restricted	to	a	minuscule	brain	area
that	rendered	them	incapable	of	deciphering	words	as
simple	as	“dog”	or	“mat.”	I	remember	a	brilliant
trilingual	woman,	a	faithful	reader	of	the	French
newspaper	Le	Monde,	who	was	deeply	sorrowed	at	the



fact	that,	after	her	brain	injury,	every	page	of	the	daily
press	looked	like	Hebrew.	Her	determination	to	relearn
to	read	was	at	least	as	strong	as	the	stroke	that	she	had
suffered	was	severe.	However,	after	two	years	of
perseverance,	her	reading	level	still	did	not	exceed	that
of	a	kindergartner:	it	took	her	several	seconds	to	read	a
single	word,	letter	by	letter,	and	she	still	stumbled	on
every	word.	Why	couldn’t	she	learn?	And	why	do	some
children,	who	suffer	from	dyslexia,	dyscalculia,	or
dyspraxia,	show	a	similar	radical	hopelessness	in
acquiring	reading,	calculating,	or	writing	while	others
surf	smoothly	through	those	fields?
Brain	plasticity	almost	seems	temperamental:

sometimes	it	overcomes	massive	difficulties,	and	other
times	it	leaves	children	and	adults	who	are	otherwise
highly	motivated	and	intelligent	with	debilitating
disabilities.	Does	it	depend	on	particular	circuits?	Do
these	circuits	lose	their	plasticity	over	the	years?	Can
plasticity	be	reopened?	What	are	the	rules	that	govern
it?	How	can	the	brain	be	so	effective	from	birth	and
throughout	a	child’s	youth?	What	algorithms	allow	our
brain	circuits	to	form	a	representation	of	the	world?
Would	understanding	them	help	us	learn	better	and
faster?	Could	we	draw	inspiration	from	them	in	order	to
build	more	efficient	machines,	artificial	intelligences
that	would	ultimately	imitate	us	or	even	surpass	us?
These	are	some	of	the	questions	that	this	book



attempts	to	answer,	in	a	radically	multidisciplinary
manner,	drawing	on	recent	scientific	discoveries	in
cognitive	science	and	neuroscience,	but	also	in	artificial
intelligence	and	education.

WHY	LEARN?

Why	do	we	have	to	learn	in	the	first	place?	The	very
existence	of	the	capacity	to	learn	raises	questions.
Wouldn’t	it	be	better	for	our	children	to	immediately
know	how	to	speak	and	think,	right	from	day	one,	like
Athena,	who,	according	to	legend,	emerged	into	the
world	from	Zeus’s	skull,	fully	grown	and	armed,	as	she
let	out	her	war	cry?	Why	aren’t	we	born	pre-wired,	with
pre-programmed	software	and	exactly	the	pre-loaded
knowledge	necessary	to	our	survival?	In	the	Darwinian
struggle	for	life,	shouldn’t	an	animal	who	is	born
mature,	with	more	knowledge	than	others,	end	up
winning	and	spreading	its	genes?	Why	did	evolution
invent	learning	in	the	first	place?
My	answer	is	simple:	a	complete	pre-wiring	of	the

brain	is	neither	possible	nor	desirable.	Impossible,
really?	Yes,	because	if	our	DNA	had	to	specify	all	the
details	of	our	knowledge,	it	simply	would	not	have	the
necessary	storage	capacity.	Our	twenty-three
chromosomes	contain	three	billion	pairs	of	the	“letters”
A,	C,	G,	T—the	molecules	adenine,	cytosine,	guanine,
and	thymine.	How	much	information	does	that



represent?	Information	is	measured	in	bits:	a	binary
decision,	0	or	1.	Since	each	of	the	four	letters	of	the
genome	codes	for	two	bits	(we	can	code	them	as	00,
01,	10,	and	11),	our	DNA	therefore	contains	a	total	of
six	billion	bits.	Remember,	however,	that	in	today’s
computers,	we	count	in	bytes,	which	are	sequences	of
eight	bits.	The	human	genome	can	thus	be	reduced	to
about	750	megabytes—the	contents	of	an	old-
fashioned	CD-ROM	or	a	small	USB	key!	And	this	basic
calculation	does	not	even	take	into	account	the	many
redundancies	that	abound	in	our	DNA.
From	this	modest	amount	of	information,	inherited

from	millions	of	years	of	evolution,	our	genome,	initially
confined	to	a	single	fertilized	egg,	manages	to	set	up
the	whole	body	plan—every	molecule	of	every	cell	in
our	liver,	kidneys,	muscles,	and,	of	course,	our	brain:
eighty-six	billion	neurons,	a	thousand	trillion
connections	….	How	could	our	genome	possibly
specify	each	one	of	them?	Assuming	that	each	of	our
nerve	connections	encodes	only	one	bit,	which	is
certainly	an	underestimate,	the	capacity	of	our	brain	is
on	the	order	of	one	hundred	terabytes	(about	1015

bits),	or	a	hundred	thousand	times	more	than	the
information	in	our	genome.	We	are	faced	with	a
paradox:	the	fantastic	palace	that	is	our	brain	contains	a
hundred	thousand	times	more	detail	than	the
architect’s	blueprints	that	are	used	to	build	it!	I	see	only



one	explanation:	the	structural	frame	of	the	palace	is
built	following	the	architect’s	guidelines	(our	genome),
while	the	details	are	left	to	the	project	manager,	who
can	adapt	the	blueprints	to	the	terrain	(the
environment).	Pre-wiring	a	human	brain	in	all	its	detail
would	be	strictly	impossible,	which	is	why	learning	is
needed	to	supplement	the	work	of	genes.
This	simple	bookkeeping	argument,	however,	fails	to

explain	why	learning	is	so	universally	widespread	in	the
animal	world.	Even	simple	organisms	devoid	of	any
cortex,	such	as	earthworms,	fruit	flies,	and	sea
cucumbers,	learn	many	of	their	behaviors.	Take	the	little
worm	called	the	“nematode,”	or	C.	elegans.	In	the	past
twenty	years,	this	millimeter-size	animal	became	a
laboratory	star,	in	part	because	its	architecture	is	under
strong	genetic	determinism	and	can	be	analyzed	down
to	the	smallest	detail.	Most	individual	specimens	have
exactly	959	cells,	including	302	neurons,	whose
connections	are	all	known	and	reproducible.	And	yet	it
learns.2 	Researchers	initially	considered	it	as	a	kind	of
robot	just	able	to	swim	back	and	forth,	but	they	later
realized	that	it	possesses	at	least	two	forms	of	learning:
habituation	and	association.	Habituation	refers	to	an
organism’s	capacity	to	adapt	to	the	repeated	presence
of	a	stimulus	(for	example,	a	molecule	in	the	water	in
which	the	animal	lives)	and	eventually	cease	to	respond
to	it.	Association,	on	the	other	hand,	consists	of



discovering	and	remembering	what	aspects	of	the
environment	predict	sources	of	food	or	danger.	The
nematode	worm	is	a	champion	of	association:	it	can
remember,	for	instance,	which	tastes,	smells,	or
temperature	levels	were	previously	associated	with
food	(bacteria)	or	with	a	repellent	molecule	(the	smell	of
garlic)	and	use	this	information	to	choose	an	optimal
path	through	its	environment.
With	such	a	small	number	of	neurons,	the	worm’s

behavior	could	have	been	fully	pre-wired.	However,	it	is
not.	The	reason	is	that	it	is	highly	advantageous,	indeed
indispensable	for	its	survival,	to	adapt	to	the	specific
environment	in	which	it	is	born.	Even	two	genetically
identical	organisms	will	not	necessarily	encounter	the
same	ecosystem.	In	the	case	of	the	nematode,	the
ability	to	quickly	adjust	its	behavior	to	the	density,
chemistry,	and	temperature	of	the	place	in	which	it
lands	allows	it	to	be	more	efficient.	More	generally,
every	animal	must	quickly	adapt	to	the	unpredictable
conditions	of	its	current	existence.	Natural	selection,
Darwin’s	remarkably	efficient	algorithm,	can	certainly
succeed	in	adapting	each	organism	to	its	ecological
niche,	but	it	does	so	at	an	appallingly	slow	rate.	Whole
generations	must	die,	due	to	lack	of	proper	adaptation,
before	a	favorable	mutation	can	increase	the	species’
chance	of	survival.	The	ability	to	learn,	on	the	other
hand,	acts	much	faster—it	can	change	behavior	within



the	span	of	a	few	minutes,	which	is	the	very
quintessence	of	learning:	being	able	to	adapt	to
unpredictable	conditions	as	quickly	as	possible.
This	is	why	learning	evolved.	Over	time,	the	animals

that	possessed	even	a	rudimentary	capacity	to	learn
had	a	better	chance	of	surviving	than	those	with	fixed
behaviors—and	they	were	more	likely	to	pass	their
genome	(now	including	genetically	driven	learning
algorithms)	on	to	the	next	generation.	In	this	manner,
natural	selection	favored	the	emergence	of	learning.
The	evolutionary	algorithm	discovered	a	good	trick:	it	is
useful	to	let	certain	parameters	of	the	body	change
rapidly	in	order	to	adjust	to	the	most	volatile	aspects	of
the	environment.
Naturally,	several	aspects	of	the	physical	world	are

strictly	invariable:	gravitation	is	universal;	the
propagation	of	light	and	sound	does	not	change
overnight;	and	that	is	why	we	do	not	have	to	learn	how
to	grow	ears,	eyes,	or	the	labyrinths	that,	in	our
vestibular	system,	keep	track	of	our	body’s	acceleration
—all	these	properties	are	genetically	hardwired.
However,	many	other	parameters,	such	as	the	spacing
of	our	two	eyes,	the	weight	and	length	of	our	limbs,	or
the	pitch	of	our	voice,	all	vary,	and	this	is	why	our	brain
must	adapt	to	them.	As	we	shall	see,	our	brains	are	the
result	of	a	compromise—we	inherit,	from	our	long
evolutionary	history,	a	great	deal	of	innate	circuitry



(coding	for	all	the	broad	intuitive	categories	into	which
we	subdivide	the	world:	images,	sounds,	movements,
objects,	animals,	people	…)	but	also,	perhaps,	to	an
even	greater	extent,	some	highly	sophisticated	learning
algorithm	that	can	refine	those	early	skills	according	to
our	experience.

HOMO	DOCENS

If	I	had	to	sum	up,	in	one	word,	the	singular	talents	of
our	species,	I	would	answer	with	“learning.”	We	are	not
simply	Homo	sapiens,	but	Homo	docens—the	species
that	teaches	itself.	Most	of	what	we	know	about	the
world	was	not	given	to	us	by	our	genes:	we	had	to	learn
it	from	our	environment	or	from	those	around	us.	No
other	animal	has	managed	to	change	its	ecological
niche	so	radically,	moving	from	the	African	savanna	to
deserts,	mountains,	islands,	polar	ice	caps,	cave
dwellings,	cities,	and	even	outer	space,	all	within	a	few
thousand	years.	Learning	has	fueled	it	all.	From	making
fire	and	designing	stone	tools	to	agriculture,
exploration,	and	atomic	fission,	the	story	of	humanity	is
one	of	constant	self-reinvention.	At	the	root	of	all	these
accomplishments	lies	one	secret:	the	extraordinary
ability	of	our	brain	to	formulate	hypotheses	and	select
those	that	fit	with	our	environment.
Learning	is	the	triumph	of	our	species.	In	our	brain,

billions	of	parameters	are	free	to	adapt	to	our



environment,	our	language,	our	culture,	our	parents,	or
our	food	….	These	parameters	are	carefully	chosen:
over	the	course	of	evolution,	the	Darwinian	algorithm
carefully	delineated	which	brain	circuits	should	be	pre-
wired	and	which	should	be	left	open	to	the
environment.	In	our	species,	the	contribution	of
learning	is	particularly	large	since	our	childhood
extends	over	many	more	years	than	it	does	for	other
mammals.	And	because	we	possess	a	unique	knack	for
language	and	mathematics,	our	learning	device	is	able
to	navigate	vast	spaces	of	hypotheses	that	recombine
into	potentially	infinite	sets—even	if	they	are	always
grounded	in	fixed	and	invariable	foundations	inherited
from	our	evolution.
More	recently,	humanity	discovered	that	it	could

increase	this	remarkable	ability	even	further	with	the
help	of	an	institution:	the	classroom.	Pedagogy	is	an
exclusive	privilege	of	our	species:	no	other	animal
actively	teaches	its	offspring	by	setting	aside	specific
time	to	monitor	their	progress,	difficulties,	and	errors.
The	invention	of	the	school,	an	institution	which
systematizes	the	informal	education	present	in	all
human	societies,	has	vastly	increased	our	brain
potential.	We	have	discovered	that	we	can	take
advantage	of	the	exuberant	plasticity	of	the	child	brain
to	instill	in	it	a	maximum	amount	of	information	and
talent.	Over	centuries,	our	school	system	has	continued



to	improve	in	efficiency,	starting	earlier	and	earlier	in
childhood	and	now	lasting	for	fifteen	years	or	more.
Increasing	numbers	of	brains	benefit	from	higher
education.	Universities	are	neural	refineries	where	our
brain	circuits	acquire	their	best	talents.
Education	is	the	main	accelerator	of	our	brain.	It	is

not	difficult	to	justify	its	presence	in	the	top	spots	in
government	spending:	without	it,	our	cortical	circuits
would	remain	diamonds	in	the	rough.	The	complexity
of	our	society	owes	its	existence	to	the	multiple
improvements	that	education	brings	to	our	cortex:
reading,	writing,	calculation,	algebra,	music,	a	sense	of
time	and	space,	a	refinement	of	memory	….	Did	you
know,	for	example,	that	the	short-term	memory	of	a
literate	person,	the	number	of	syllables	she	can	repeat,
is	almost	double	that	of	an	adult	who	never	attended
school	and	remained	illiterate?	Or	that	IQ	increases	by
several	points	for	each	additional	year	of	education	and
literacy?

LEARNING	TO	LEARN

Education	magnifies	the	already	considerable	faculties
of	our	brain—but	could	it	perform	even	better?	At
school	and	at	work,	we	constantly	tinker	with	our	brain’s
learning	algorithms,	yet	we	do	so	intuitively,	without
paying	attention	to	how	to	learn.	No	one	has	ever
explained	to	us	the	rules	by	which	our	brain	memorizes



and	understands	or,	on	the	contrary,	forgets	and	makes
mistakes.	It	truly	is	a	pity,	because	the	scientific
knowledge	is	extensive.	An	excellent	website,	put
together	by	the	British	Education	Endowment
Foundation	(EEF),3 	lists	the	most	successful
educational	interventions	–	and	it	gives	a	very	high
ranking	to	the	teaching	of	metacognition	(knowing	the
powers	and	limits	of	one’s	own	brain).	Learning	to	learn
is	arguably	the	most	important	factor	for	academic
success.
Fortunately,	we	now	know	a	lot	about	how	learning

works.	Thirty	years	of	research,	at	the	boundaries	of
computer	science,	neurobiology,	and	cognitive
psychology,	have	largely	elucidated	the	algorithms	that
our	brain	uses,	the	circuits	involved,	the	factors	that
modulate	their	efficacy,	and	the	reasons	why	they	are
uniquely	efficient	in	humans.	In	this	book,	I	will	discuss
all	those	points	in	turn.	When	you	close	this	book,	I
hope	you	will	know	much	more	about	your	own
learning	processes.	It	seems	fundamental,	to	me,	that
every	child	and	every	adult	realize	the	full	potential	of
his	or	her	own	brain	and	also,	of	course,	its	limits.
Contemporary	cognitive	science,	through	the
systematic	dissection	of	our	mental	algorithms	and
brain	mechanisms,	gives	new	meaning	to	the	famous
Socratic	adage	“Know	thyself.”	Today,	the	point	is	no
longer	just	to	sharpen	our	introspection,	but	to



understand	the	subtle	neuronal	mechanics	that
generate	our	thoughts,	in	an	attempt	to	use	them	in
optimal	accordance	with	our	needs,	goals,	and	desires.
The	emerging	science	of	how	we	learn	is,	of	course,

of	special	relevance	to	all	those	for	whom	learning	is	a
professional	activity:	teachers	and	educators.	I	am
deeply	convinced	that	one	cannot	properly	teach
without	possessing,	implicitly	or	explicitly,	a	mental
model	of	what	is	going	on	in	the	minds	of	the	learners.
What	sort	of	intuitions	do	they	start	with?	What	steps
do	they	have	to	take	in	order	to	move	forward?	What
factors	can	help	them	develop	their	skills?
While	cognitive	neuroscience	does	not	have	all	the

answers,	we	begin	to	understand	that	all	children	start
off	life	with	a	similar	brain	architecture—a	Homo
sapiens	brain,	radically	different	from	that	of	other	apes.
I	am	not	denying,	of	course,	that	our	brains	vary:	the
quirks	of	our	genomes,	as	well	as	the	whimsies	of	early
brain	development,	grant	us	slightly	different	strengths
and	learning	speeds.	However,	the	basic	circuitry	is	the
same	in	all	of	us,	as	is	the	organization	of	our	learning
algorithms.	There	are	therefore	fundamental	principles
that	any	teacher	must	respect	in	order	to	be	most
effective.	In	this	book,	we	will	see	many	examples.	All
young	children	share	abstract	intuitions	in	the	domains
of	language,	arithmetic,	logic,	and	probability,	thus
providing	a	foundation	on	which	higher	education	must



be	grounded.	And	all	learners	benefit	from	focused
attention,	active	engagement,	error	feedback,	and	a
cycle	of	daily	rehearsal	and	nightly	consolidation—I	call
these	factors	the	“four	pillars”	of	learning,	because,	as
we	shall	see,	they	lie	at	the	foundation	of	the	universal
human	learning	algorithm	present	in	all	our	brains,
children	and	adults	alike.
At	the	same	time,	our	brains	do	exhibit	individual

variations,	and	in	some	extreme	cases,	a	pathology	can
appear.	The	reality	of	developmental	pathologies,	such
as	dyslexia,	dyscalculia,	dyspraxia,	and	attention
disorders,	is	no	longer	a	subject	of	doubt.	Fortunately,
as	we	increasingly	understand	the	common	architecture
from	which	these	quirks	arise,	we	also	discover	that
simple	strategies	exist	to	detect	and	compensate	for
them.	One	of	the	goals	of	this	book	is	to	spread	this
growing	scientific	knowledge,	so	that	every	teacher,
and	also	every	parent,	can	adopt	an	optimal	teaching
strategy.	While	children	vary	dramatically	in	what	they
know,	they	still	share	the	same	learning	algorithms.
Thus,	the	pedagogical	tricks	that	work	best	with	all
children	are	also	those	that	tend	to	be	the	most
efficient	for	children	with	learning	disabilities—they
must	be	applied	only	with	greater	focus,	patience,
systematicity,	and	tolerance	to	error.
And	the	latter	point	is	crucial:	while	error	feedback	is

essential,	many	children	lose	confidence	and	curiosity



because	their	errors	are	punished	rather	than	corrected.
In	schools	worldwide,	error	feedback	is	often
synonymous	with	punishment	and	stigmatization—and
later	in	this	book	I	will	have	much	to	say	about	the	role
of	school	grades	in	perpetuating	this	confusion.
Negative	emotions	crush	our	brain’s	learning	potential,
whereas	providing	the	brain	with	a	fear-free
environment	may	reopen	the	gates	of	neuronal
plasticity.	There	will	be	no	progress	in	education
without	simultaneously	considering	the	emotional	and
cognitive	facets	of	our	brain—in	today’s	cognitive
neuroscience,	both	are	considered	key	ingredients	of
the	learning	cocktail.

THE	CHALLENGE	OF	MACHINES

Today,	human	intelligence	faces	a	new	challenge:	we
are	no	longer	the	only	champions	of	learning.	In	all
fields	of	knowledge,	learning	algorithms	are	challenging
our	species’	unique	status.	Thanks	to	them,
smartphones	can	now	recognize	faces	and	voices,
transcribe	speech,	translate	foreign	languages,	control
machines,	and	even	play	chess	or	Go—much	better
than	we	can.	Machine	learning	has	become	a	billion-
dollar	industry	that	is	increasingly	inspired	by	our
brains.	How	do	these	artificial	algorithms	work?	Can
their	principles	help	us	understand	what	learning	is?	Are



they	already	able	to	imitate	our	brains,	or	do	they	still
have	a	long	way	to	go?
While	the	current	advances	in	computer	science	are

fascinating,	their	limits	are	evident.	Conventional	deep
learning	algorithms	mimic	only	a	small	part	of	our
brain’s	functioning,	the	one	that,	I	argue,	corresponds
to	the	first	stages	of	sensory	processing,	the	first	two	or
three	hundred	milliseconds	during	which	our	brain
operates	in	an	unconscious	manner.	This	type	of
processing	is	in	no	way	superficial:	in	a	fraction	of	a
second,	our	brain	can	recognize	a	face	or	a	word,	put	it
in	context,	understand	it,	and	even	integrate	it	into	a
small	sentence	….	The	limitation,	however,	is	that	the
process	remains	strictly	bottom-up,	without	any	real
capacity	for	reflection.	Only	in	the	subsequent	stages,
which	are	much	slower,	more	conscious,	and	more
reflective,	does	our	brain	manage	to	deploy	all	its
abilities	of	reasoning,	inference,	and	flexibility—features
that	today’s	machines	are	still	far	from	matching.	Even
the	most	advanced	computer	architectures	fall	short	of
any	human	infant’s	ability	to	build	abstract	models	of
the	world.
Even	within	their	fields	of	expertise—for	example,	the

rapid	recognition	of	shapes—modern-day	algorithms
encounter	a	second	problem:	they	are	much	less
effective	than	our	brain.	The	state	of	the	art	in	machine
learning	involves	running	millions,	even	billions,	of



training	attempts	on	computers.	Indeed,	machine
learning	has	become	virtually	synonymous	with	big
data:	without	massive	data	sets,	algorithms	have	a	hard
time	extracting	abstract	knowledge	that	generalizes	to
new	situations.	In	other	words,	they	do	not	make	the
best	use	of	data.
In	this	contest,	the	infant	brain	wins	hands	down:

babies	do	not	need	more	than	one	or	two	repetitions	to
learn	a	new	word.	Their	brain	makes	the	most	of
extremely	scarce	data,	a	competence	that	still	eludes
today’s	computers.	Neuronal	learning	algorithms	often
come	close	to	optimal	computation:	they	manage	to
extract	the	true	essence	from	the	slightest	observation.
If	computer	scientists	hope	to	achieve	the	same
performance	in	machines,	they	will	have	to	draw
inspiration	from	the	many	learning	tricks	that	evolution
integrated	into	our	brain:	attention,	for	example,	which
allows	us	to	select	and	amplify	relevant	information;	or
sleep,	an	algorithm	by	which	our	brain	synthesizes	what
it	learned	on	previous	days.	New	machines	with	these
properties	are	beginning	to	emerge,	and	their
performance	is	constantly	improving—they	will
undoubtedly	compete	with	our	brains	in	the	near
future.
According	to	an	emerging	theory,	the	reason	that	our

brain	is	still	superior	to	machines	is	that	it	acts	as	a
statistician.	By	constantly	attending	to	probabilities	and



uncertainties,	it	optimizes	its	ability	to	learn.	During	its
evolution,	our	brain	seems	to	have	acquired
sophisticated	algorithms	that	constantly	keep	track	of
the	uncertainty	associated	with	what	it	has	learned—
and	such	a	systematic	attention	to	probabilities	is,	in	a
precise	mathematical	sense,	the	optimal	way	to	make
the	most	of	each	piece	of	information.4

Recent	experimental	data	support	this	hypothesis.
Even	babies	understand	probabilities:	from	birth,	they
seem	to	be	deeply	embedded	in	their	brain	circuits.
Children	act	like	little	budding	scientists:	their	brains
teem	with	hypotheses,	which	resemble	scientific
theories	that	their	experiences	put	to	the	test.
Reasoning	with	probabilities,	in	a	largely	unconscious
manner,	is	deeply	inscribed	in	the	logic	of	our	learning.
It	allows	any	of	us	to	gradually	reject	false	hypotheses
and	retain	only	the	theories	that	make	sense	of	the
data.	And,	unlike	other	animal	species,	humans	seem	to
use	this	sense	of	probabilities	to	acquire	scientific
theories	from	the	outside	world.	Only	Homo	sapiens
manages	to	systematically	generate	abstract	symbolic
thoughts	and	to	update	their	plausibility	in	the	face	of
new	observations.
Innovative	computer	algorithms	are	beginning	to

incorporate	this	new	vision	of	learning.	They	are	called
“Bayesian,”	after	the	Reverend	Thomas	Bayes	(1702–
61),	who	outlined	the	rudiments	of	this	theory	as	early



as	the	eighteenth	century.	My	hunch	is	that	Bayesian
algorithms	will	revolutionize	machine	learning—indeed,
we	will	see	that	they	are	already	able	to	extract	abstract
information	with	an	efficiency	close	to	that	of	a	human
scientist.

Our	journey	into	the	contemporary	science	of	learning
is	a	three-part	trip.
In	the	first	part,	entitled	“What	Is	Learning?”,	we	start

by	defining	what	it	means	for	humans	or	animals—or
indeed	any	algorithm	or	machine—to	learn	something.
The	idea	is	simple:	to	learn	is	to	progressively	form,	in
silicon	and	neural	circuits	alike,	an	internal	model	of	the
outside	world.	When	I	walk	around	a	new	town,	I	form	a
mental	map	of	its	layout—a	miniature	model	of	its
streets	and	passageways.	Likewise,	a	child	who	is
learning	to	ride	a	bike	is	shaping,	in	her	neural	circuits,
an	unconscious	simulation	of	how	the	actions	on	the
pedals	and	handlebars	affect	the	bike’s	stability.
Similarly,	a	computer	algorithm	learning	to	recognize
faces	is	acquiring	template	models	of	the	various
possible	shapes	of	eyes,	noses,	mouths,	and	their
combinations.
But	how	do	we	set	up	the	proper	mental	model?	As

we	shall	see,	the	learner’s	mind	can	be	likened	to	a
giant	machine	with	millions	of	tunable	parameters
whose	settings	collectively	define	what	is	learned	(for



instance,	where	the	streets	are	likely	to	be	in	our	mental
map	of	the	neighborhood).	In	the	brain,	the	parameters
are	synapses,	the	connections	between	neurons,	which
can	vary	in	strength;	in	most	present-day	computers,
they	are	the	tunable	weights	or	probabilities	that
specify	the	strength	of	each	tenable	hypothesis.
Learning,	in	both	brains	and	machines,	thus	requires
searching	for	an	optimal	combination	of	parameters
that,	together,	define	the	mental	model	in	every	detail.
In	this	sense,	learning	is	a	massive	search	problem—
and	in	order	to	understand	how	learning	works	in	the
human	brain,	it	greatly	helps	to	examine	how	learning
algorithms	operate	in	present-day	computers.
By	comparing	the	performance	of	computer

algorithms	with	those	of	the	brain,	in	silico	versus	in
vivo,	we	will	progressively	get	a	sharper	picture	of	what
learning	means	at	the	brain	level.	For	sure,
mathematicians	and	computer	scientists	haven’t
managed	to	design	learning	algorithms	as	powerful	as
the	human	brain—yet.	But	they	are	beginning	to	home
in	on	a	theory	of	the	optimal	learning	algorithm	that	any
system	should	use	if	it	aims	for	the	greatest	efficiency.
According	to	this	theory,	the	best	learner	operates	as	a
scientist	who	makes	rational	use	of	probabilities	and
statistics.	A	new	model	emerges:	that	of	the	brain	as	a
statistician,	of	cerebral	circuits	as	computing	with
probabilities.	This	theory	specifies	a	clear	division	of



labor	between	nature	and	nurture:	the	genes	first	set	up
vast	spaces	of	a	priori	hypotheses—and	the
environment	then	selects	the	hypotheses	which	best
match	the	external	world.	The	set	of	hypotheses	is
genetically	specified;	their	selection	is	experience-
dependent.
Does	this	theory	correspond	to	how	the	brain	works?

And	how	is	learning	implemented	in	our	biological
circuits?	What	changes	in	our	brains	when	we	acquire	a
novel	competence?	In	the	second	section,	“How	Our
Brain	Learns,”	we	will	turn	to	psychology	and
neuroscience.	I	will	focus	on	babies,	who	are	genuine
learning	machines	without	rivals.	Recent	data	show	that
infants	are	indeed	the	budding	statisticians	predicted
by	the	theory.	Their	remarkable	intuition	in	the	fields	of
language,	geometry,	numbers,	and	statistics	confirms
that	they	are	anything	but	a	blank	slate,	a	tabula	rasa.
From	birth,	children’s	brain	circuits	are	already
organized	and	project	hypotheses	onto	the	outside
world.	But	they	also	have	a	considerable	margin	of
plasticity,	which	is	reflected	in	the	brain’s	perpetual
effervescence	of	synaptic	changes.	Within	this	statistical
machine,	nature	and	nurture,	far	from	opposing	each
other,	join	forces.	The	result	is	a	structured	yet	plastic
system	with	an	unmatched	ability	to	repair	itself	in	the
face	of	brain	injury	and	to	recycle	its	brain	circuits	in



order	to	acquire	skills	unanticipated	by	evolution,	such
as	reading	or	mathematics.
In	the	third	part,	“The	Four	Pillars	of	Learning,”	I

detail	some	of	the	tricks	that	make	our	brain	the	most
effective	learning	device	known	today.	Four	essential
mechanisms,	or	“pillars,”	massively	modulate	our	ability
to	learn.	The	first	is	attention:	a	set	of	neural	circuits
that	select,	amplify,	and	propagate	the	signals	that	we
view	as	relevant—multiplying	their	impact	in	our
memory	a	hundred	fold.	My	second	pillar	is	active
engagement:	a	passive	organism	learns	almost	nothing,
because	learning	requires	an	active	generation	of
hypotheses,	with	motivation	and	curiosity.	The	third
pillar,	and	the	flip	side	to	active	engagement,	is	error
feedback:	whenever	we	are	surprised	because	the
world	violates	our	expectations,	error	signals	spread
throughout	our	brain.	They	correct	our	mental	models,
eliminate	inappropriate	hypotheses,	and	stabilize	the
most	accurate	ones.	Finally,	the	fourth	pillar	is
consolidation:	over	time,	our	brain	compiles	what	it	has
acquired	and	transfers	it	into	long-term	memory,	thus
freeing	neural	resources	for	further	learning.	Repetition
plays	an	essential	role	in	this	consolidation	process.
Even	sleep,	far	from	being	a	period	of	inactivity,	is	a
privileged	moment	during	which	the	brain	revisits	its
past	states,	at	a	faster	pace,	and	recodes	the
knowledge	acquired	during	the	day.



These	four	pillars	are	universal:	babies,	children,	and
adults	of	all	ages	continually	deploy	them	whenever
they	exercise	their	ability	to	learn.	This	is	why	we	should
all	learn	to	master	them—it	is	how	we	can	learn	to
learn.	In	the	conclusion,	I	will	come	back	to	the	practical
consequences	of	these	scientific	advances.	Changing
our	practices	at	school,	at	home,	or	at	work	is	not
necessarily	as	complicated	as	we	think.	Very	simple
ideas	about	play,	curiosity,	socialization,	concentration,
and	sleep	can	augment	what	is	already	our	brain’s
greatest	talent:	learning.







At	its	core,	intelligence	can	be	viewed	as	a
process	that	converts	unstructured	information
into	useful	and	actionable	knowledge.

Demis	Hassabis,	
founder	of	the	AI	company	DeepMind	(2017)

What	is	learning?	In	many	Latin	languages,	learning	has
the	same	root	as	apprehending:	apprendre	in	French,
aprender	in	Spanish	and	Portuguese.	…	Indeed,
learning	is	grasping	a	fragment	of	reality,	catching	it,
and	bringing	it	inside	our	brains.	In	cognitive	science,
we	say	that	learning	consists	of	forming	an	internal
model	of	the	world.	Through	learning,	the	raw	data	that
strikes	our	senses	turns	into	refined	ideas,	abstract
enough	to	be	reused	in	a	new	context—smaller-scale
models	of	reality.
In	the	following	pages,	we	will	review	what	artificial

intelligence	and	cognitive	science	have	taught	us	about
how	such	internal	models	emerge,	in	both	brains	and
machines.	How	does	the	representation	of	information
change	when	we	learn?	How	can	we	understand	it	at	a
level	that	is	common	to	any	organism,	human,	animal,
or	machine?	By	reviewing	the	various	tricks	that
engineers	have	designed	to	allow	machines	to	learn,	we
will	progressively	conjure	up	a	sharper	picture	of	the



amazing	computations	that	infants	must	perform	as
they	learn	to	see,	speak,	and	write.	In	fact,	as	we	shall
see,	the	infant	brain	keeps	the	upper	hand:	despite
their	successes,	current	learning	algorithms	capture	only
a	fraction	of	the	abilities	of	the	human	brain.
Understanding	exactly	where	the	machine	learning
metaphor	breaks	down,	and	where	even	an	infant’s
brain	still	surpasses	the	most	powerful	computer,	we
will	delineate	exactly	what	“learning”	means.







CHAPTER	1

Seven	Definitions	of	Learning

WHAT	DOES	“LEARNING”	MEAN?	MY	FIRST	AND	MOST
GENERAL	DEFINITION	is	the	following:	to	learn	is	to	form
an	internal	model	of	the	external	world.
You	may	not	be	aware	of	it,	but	your	brain	has

acquired	thousands	of	internal	models	of	the	outside
world.	Metaphorically	speaking,	they	are	like	miniature
mock-ups	more	or	less	faithful	to	the	reality	they
represent.	We	all	have	in	our	brains,	for	example,	a
mental	map	of	our	neighborhood	and	our	home—all
we	have	to	do	is	close	our	eyes	and	envision	them	with
our	thoughts.	Obviously,	none	of	us	were	born	with	this
mental	map—we	had	to	acquire	it	through	learning.
The	richness	of	these	mental	models,	which	are,	for

the	most	part,	unconscious,	exceeds	our	imagination.
For	example,	you	possess	a	vast	mental	model	of	the
English	language,	which	allows	you	to	understand	the
words	you	are	reading	right	now	and	guess	that
plastovski	is	not	an	English	word,	whereas	swoon	and
wistful	are,	and	dragostan	could	be.	Your	brain	also
includes	several	models	of	your	body:	it	constantly	uses
them	to	map	the	position	of	your	limbs	and	to	direct
them	while	maintaining	your	balance.	Other	mental



models	encode	your	knowledge	of	objects	and	your
interactions	with	them:	knowing	how	to	hold	a	pen,
write,	or	ride	a	bike.	Others	even	represent	the	minds
of	others:	you	possess	a	vast	mental	catalog	of	people
who	are	close	to	you,	their	appearances,	their	voices,
their	tastes,	and	their	quirks.
These	mental	models	can	generate	hyper-realistic

simulations	of	the	universe	around	us.	Did	you	ever
notice	that	your	brain	sometimes	projects	the	most
authentic	virtual	reality	shows,	in	which	you	can	walk,
move,	dance,	visit	new	places,	have	brilliant
conversations,	or	feel	strong	emotions?	These	are	your
dreams!	It	is	fascinating	to	realize	that	all	the	thoughts
that	come	to	us	in	our	dreams,	however	complex,	are
simply	the	product	of	our	free-running	internal	models
of	the	world.
But	we	also	dream	up	reality	when	awake:	our	brain

constantly	projects	hypotheses	and	interpretative
frameworks	on	the	outside	world.	This	is	because,
unbeknownst	to	us,	every	image	that	appears	on	our
retina	is	ambiguous—whenever	we	see	a	plate,	for
instance,	the	image	is	compatible	with	an	infinite
number	of	ellipses.	If	we	see	the	plate	as	round,	even
though	the	raw	sense	data	picture	it	as	an	oval,	it	is
because	our	brain	supplies	additional	data:	it	has
learned	that	the	round	shape	is	the	most	likely
interpretation.	Behind	the	scenes,	our	sensory	areas



ceaselessly	compute	with	probabilities,	and	only	the
most	likely	model	makes	it	into	our	consciousness.	It	is
the	brain’s	projections	that	ultimately	give	meaning	to
the	flow	of	data	that	reaches	us	from	our	senses.	In	the
absence	of	an	internal	model,	raw	sensory	inputs	would
remain	meaningless.
Learning	allows	our	brain	to	grasp	a	fragment	of

reality	that	it	had	previously	missed	and	to	use	it	to
build	a	new	model	of	the	world.	It	can	be	a	part	of
external	reality,	as	when	we	learn	history,	botany,	or	the
map	of	a	city,	but	our	brain	also	learns	to	map	the
reality	internal	to	our	bodies,	as	when	we	learn	to
coordinate	our	actions	and	concentrate	our	thoughts	in
order	to	play	the	violin.	In	both	cases,	our	brain
internalizes	a	new	aspect	of	reality:	it	adjusts	its	circuits
to	appropriate	a	domain	that	it	had	not	mastered
before.
Such	adjustments,	of	course,	have	to	be	pretty	clever.

The	power	of	learning	lies	in	its	ability	to	adjust	to	the
external	world	and	to	correct	for	errors—but	how	does
the	brain	of	the	learner	“know”	how	to	update	its
internal	model	when,	say,	it	gets	lost	in	its
neighborhood,	falls	from	its	bike,	loses	a	game	of
chess,	or	misspells	the	word	ecstasy?	We	will	now
review	seven	key	ideas	that	lie	at	the	heart	of	present-
day	machine-learning	algorithms	and	that	may	apply



equally	well	to	our	brains—seven	different	definitions	of
what	“learning”	means.

LEARNING	IS	ADJUSTING	THE	PARAMETERS	OF	A	MENTAL
MODEL

Adjusting	a	mental	model	is	sometimes	very	simple.
How,	for	example,	do	we	reach	out	to	an	object	that	we
see?	In	the	seventeenth	century,	René	Descartes	(1596–
1650)	had	already	guessed	that	our	nervous	system
must	contain	processing	loops	that	transform	visual
inputs	into	muscular	commands	(see	the	figure	on	the
next	page).	You	can	experience	this	for	yourself:	try
grabbing	an	object	while	wearing	somebody	else’s
glasses,	preferably	someone	who	is	very	nearsighted.
Even	better,	if	you	can,	get	a	hold	of	prisms	that	shift
your	vision	a	dozen	degrees	to	the	left	and	try	to	catch
the	object.1 	You	will	see	that	your	first	attempt	is
completely	off:	because	of	the	prisms,	your	hand
reaches	to	the	right	of	the	object	that	you	are	aiming
for.	Gradually,	you	adjust	your	movements	to	the	left.
Through	successive	trial	and	error,	your	gestures
become	more	and	more	precise,	as	your	brain	learns	to
correct	the	offset	of	your	eyes.	Now	take	off	the	glasses
and	grab	the	object:	you’ll	be	surprised	to	see	that	your
hand	goes	to	the	wrong	location,	now	way	too	far	to
the	left!



So,	what	happened?	During	this	brief	learning	period,
your	brain	adjusted	its	internal	model	of	vision.	A
parameter	of	this	model,	one	that	corresponds	to	the
offset	between	the	visual	scene	and	the	orientation	of
your	body,	was	set	to	a	new	value.	During	this
recalibration	process,	which	works	by	trial	and	error,
what	your	brain	did	can	be	likened	to	what	a	hunter
does	in	order	to	adjust	his	rifle’s	viewfinder:	he	takes	a
test	shot,	then	uses	it	to	adjust	his	scope,	thus
progressively	shooting	more	and	more	accurately.	This
type	of	learning	can	be	very	fast:	a	few	trials	are	enough
to	correct	the	gap	between	vision	and	action.	However,
the	new	parameter	setting	is	not	compatible	with	the
old	one—hence	the	systematic	error	we	all	make	when
we	remove	the	prisms	and	return	to	normal	vision.



What	is	learning?	To	learn	is	to	adjust	the	parameters	of	an
internal	model.	Learning	to	aim	with	one’s	finger,	for	example,
consists	of	setting	the	offset	between	vision	and	action:	each
aiming	error	provides	useful	information	that	allows	one	to
reduce	the	gap.	In	artificial	neural	networks,	although	the
number	of	settings	is	much	larger,	the	logic	is	the	same.
Recognizing	a	character	requires	the	fine-tuning	of	millions	of
connections.	Again,	each	error—here,	the	incorrect	activation	of
the	output	“8”—can	be	back-propagated	and	used	to	adjust	the
values	of	the	connections,	thus	improving	performance	on	the
next	test.

Undeniably,	this	type	of	learning	is	a	little	particular,
because	it	requires	the	adjustment	of	only	a	single
parameter	(viewing	angle).	Most	of	our	learning	is	much
more	elaborate	and	requires	adjusting	tens,	hundreds,
or	even	thousands	of	millions	of	parameters	(every
synapse	in	the	relevant	brain	circuit).	The	principle,
however,	is	always	the	same:	it	boils	down	to	searching,
among	myriad	possible	settings	of	the	internal	model,



for	those	that	best	correspond	to	the	state	of	the
external	world.
An	infant	is	born	in	Tokyo.	Over	the	next	two	or	three

years,	its	internal	model	of	language	will	have	to	adjust
to	the	characteristics	of	the	Japanese	language.	This
baby’s	brain	is	like	a	machine	with	millions	of	settings	at
each	level.	Some	of	these	settings,	at	the	auditory	level,
determine	which	inventory	of	consonants	and	vowels	is
used	in	Japanese	and	the	rules	that	allow	them	to	be
combined.	A	baby	born	into	a	Japanese	family	must
discover	which	phonemes	make	up	Japanese	words
and	where	to	place	the	boundaries	between	those
sounds.	One	of	the	parameters,	for	example,	concerns
the	distinction	between	the	sounds	/R/	and	/L/:	this	is	a
crucial	contrast	in	English,	but	not	in	Japanese,	which
makes	no	distinction	between	Bill	Clinton’s	election	and
his	erection	….	Each	baby	must	thus	fix	a	set	of
parameters	that	collectively	specify	which	categories	of
speech	sounds	are	relevant	for	his	or	her	native
language.
A	similar	learning	procedure	is	duplicated	at	each

level,	from	sound	patterns	to	vocabulary,	grammar,	and
meaning.	The	brain	is	organized	as	a	hierarchy	of
models	of	reality,	each	nested	inside	the	next	like
Russian	dolls—and	learning	means	using	the	incoming
data	to	set	the	parameters	at	every	level	of	this
hierarchy.	Let’s	consider	a	high-level	example:	the



acquisition	of	grammatical	rules.	Another	key	difference
which	the	baby	must	learn,	between	Japanese	and
English,	concerns	the	order	of	words.	In	a	canonical
sentence	with	a	subject,	a	verb,	and	a	direct	object,	the
English	language	first	states	the	subject,	then	the	verb,
and	finally	its	object:	“John	+	eats	+	an	apple.”	In
Japanese,	on	the	other	hand,	the	most	common	order
is	subject,	then	object,	then	verb:	“John	+	an	apple	+
eats.”	What	is	remarkable	is	that	the	order	is	also
reversed	for	prepositions	(which	logically	become	post-
positions),	possessives,	and	many	other	parts	of	speech.
The	sentence	“My	uncle	wants	to	work	in	Boston,”	thus
becomes	mumbo	jumbo	worthy	of	Yoda	from	Star
Wars:	“Uncle	my,	Boston	in,	work	wants”—which	makes
perfect	sense	to	a	Japanese	speaker.
Fascinatingly,	these	reversals	are	not	independent	of

one	another.	Linguists	think	that	they	arise	from	the
setting	of	a	single	parameter	called	the	“head
position”:	the	defining	word	of	a	phrase,	its	head,	is
always	placed	first	in	English	(in	Paris,	my	uncle,	wants
to	live),	but	last	in	Japanese	(Paris	in,	uncle	my,	live
wants).	This	binary	parameter	distinguishes	many
languages,	even	some	that	are	not	historically	linked
(the	Navajo	language,	for	example,	follows	the	same
rules	as	Japanese).	In	order	to	learn	English	or
Japanese,	one	of	the	things	that	a	child	must	figure	out



is	how	to	set	the	head	position	parameter	in	his	internal
language	model.

LEARNING	IS	EXPLOITING	A	COMBINATORIAL	EXPLOSION

Can	language	learning	really	be	reduced	to	the	setting
of	some	parameters?	If	this	seems	hard	to	believe,	it	is
because	we	are	unable	to	fathom	the	extraordinary
number	of	possibilities	that	open	up	as	soon	as	we
increase	the	number	of	adjustable	parameters.	This	is
called	the	“combinatorial	explosion”—the	exponential
increase	that	occurs	when	you	combine	even	a	small
number	of	possibilities.	Suppose	that	the	grammar	of
the	world’s	languages	can	be	described	by	about	fifty
binary	parameters,	as	some	linguists	postulate.	This
yields	250	combinations,	which	are	over	one	million
billion	possible	languages,	or	1	followed	by	fifteen
zeros!	The	syntactic	rules	of	the	world’s	three	thousand
languages	easily	fit	into	this	gigantic	space.	However,	in
our	brain,	there	aren’t	just	fifty	adjustable	parameters,
but	an	astoundingly	larger	number:	eighty-six	billion
neurons,	each	with	about	ten	thousand	synaptic
contacts	whose	strength	can	vary.	The	space	of	mental
representations	that	opens	up	is	practically	infinite.
Human	languages	heavily	exploit	these	combinations

at	all	levels.	Consider,	for	instance,	the	mental	lexicon:
the	set	of	words	that	we	know	and	whose	model	we
carry	around	with	us.	Each	of	us	has	learned	about	fifty



thousand	words	with	the	most	diverse	meanings.	This
seems	like	a	huge	lexicon,	but	we	manage	to	acquire	it
in	about	a	decade	because	we	can	decompose	the
learning	problem.	Indeed,	considering	that	these	fifty
thousand	words	are	on	average	two	syllables,	each
consisting	of	about	three	phonemes,	taken	from	the
forty-four	phonemes	in	English,	the	binary	coding	of	all
these	words	requires	less	than	two	million	elementary
binary	choices	(“bits,”	whose	value	is	0	or	1).	In	other
words,	all	our	knowledge	of	the	dictionary	would	fit	in	a
small	250-kilobyte	computer	file	(each	byte	comprising
eight	bits).
This	mental	lexicon	could	be	compressed	to	an	even

smaller	size	if	we	took	into	account	the	many
redundancies	that	govern	words.	Drawing	six	letters	at
random,	like	“xfdrga,”	does	not	generate	an	English
word.	Real	words	are	composed	of	a	pyramid	of
syllables	that	are	assembled	according	to	strict	rules.
And	this	is	true	at	all	levels:	sentences	are	regular
collections	of	words,	which	are	regular	collections	of
syllables,	which	are	regular	collections	of	phonemes.
The	combinations	are	both	vast	(because	one	chooses
among	several	tens	or	hundreds	of	elements)	and
bounded	(because	only	certain	combinations	are
allowed).	To	learn	a	language	is	to	discover	the
parameters	that	govern	these	combinations	at	all	levels.



In	summary,	the	human	brain	breaks	down	the
problem	of	learning	by	creating	a	hierarchical,
multilevel	model.	This	is	particularly	obvious	in	the	case
of	language,	from	elementary	sounds	to	the	whole
sentence	or	even	discourse—but	the	same	principle	of
hierarchical	decomposition	is	reproduced	in	all	sensory
systems.	Some	brain	areas	capture	low-level	patterns:
they	see	the	world	through	a	very	small	temporal	and
spatial	window,	thus	analyzing	the	smallest	patterns.
For	example,	in	the	primary	visual	area,	the	first	region
of	the	cortex	to	receive	visual	inputs,	each	neuron
analyzes	only	a	very	small	portion	of	the	retina.	It	sees
the	world	through	a	pinhole	and,	as	a	result,	discovers
very	low-level	regularities,	such	as	the	presence	of	a
moving	oblique	line.	Millions	of	neurons	do	the	same
work	at	different	points	in	the	retina,	and	their	outputs
become	the	inputs	of	the	next	level,	which	thus	detects
“regularities	of	regularities,”	and	so	on	and	so	forth.	At
each	level,	the	scale	broadens:	the	brain	seeks
regularities	on	increasingly	vast	scales,	in	both	time	and
space.	From	this	hierarchy	emerges	the	ability	to	detect
increasingly	complex	objects	or	concepts:	a	line,	a
finger,	a	hand,	an	arm,	a	human	body	…	no,	wait,	two,
there	are	two	people	facing	each	other,	a	handshake
….	It	is	the	first	Trump-Macron	encounter!

LEARNING	IS	MINIMIZING	ERRORS



The	computer	algorithms	that	we	call	“artificial	neural
networks”	are	directly	inspired	by	the	hierarchical
organization	of	the	cortex.	Like	the	cortex,	they	contain
a	pyramid	of	successive	layers,	each	of	which	attempts
to	discover	deeper	regularities	than	the	previous	one.
Because	these	consecutive	layers	organize	the
incoming	data	in	deeper	and	deeper	ways,	they	are
also	called	“deep	networks.”	Each	layer,	by	itself,	is
capable	of	discovering	only	an	extremely	simple	part	of
the	external	reality	(mathematicians	speak	of	a	linearly
separable	problem,	i.e.,	each	neuron	can	separate	that
data	into	only	two	categories,	A	and	B,	by	drawing	a
straight	line	through	them).	Assemble	many	of	these
layers,	however,	and	you	get	an	extremely	powerful
learning	device,	capable	of	discovering	complex
structures	and	adjusting	to	very	diverse	problems.
Today’s	artificial	neural	networks,	which	take	advantage
of	the	advances	in	computer	chips,	are	also	deep,	in	the
sense	that	they	contain	dozens	of	successive	layers.
These	layers	become	increasingly	insightful	and
capable	of	identifying	abstract	properties	the	further
away	they	are	from	the	sensory	input.
Let’s	take	the	example	of	the	LeNet	algorithm,

created	by	the	French	pioneer	of	neural	networks,	Yann
LeCun	(see	figure	2	in	the	color	insert).2 	As	early	as	the
1990s,	this	neural	network	achieved	remarkable
performance	in	the	recognition	of	handwritten



characters.	For	years,	Canada	Post	used	it	to
automatically	process	handwritten	postal	codes.	How
does	it	work?	The	algorithm	receives	the	image	of	a
written	character	as	an	input,	in	the	form	of	pixels,	and
it	proposes,	as	an	output,	a	tentative	interpretation:	one
out	of	the	ten	possible	digits	or	twenty-six	letters.	The
artificial	network	contains	a	hierarchy	of	processing
units	that	look	a	bit	like	neurons	and	form	successive
layers.	The	first	layers	are	connected	directly	with	the
image:	they	apply	simple	filters	that	recognize	lines	and
curve	fragments.	The	layers	higher	up	in	the	hierarchy,
however,	contain	wider	and	more	complex	filters.
Higher-level	units	can	therefore	learn	to	recognize
larger	and	larger	portions	of	the	image:	the	curve	of	a
2,	the	loop	of	an	O,	or	the	parallel	lines	of	a	Z	…	until
we	reach,	at	the	output	level,	artificial	neurons	that
respond	to	a	character	regardless	of	its	position,	font,
or	case.	All	these	properties	are	not	imposed	by	a
programmer:	they	result	entirely	from	the	millions	of
connections	that	link	the	units.	These	connections,	once
adjusted	by	an	automated	algorithm,	define	the	filter
that	each	neuron	applies	to	its	inputs:	their	settings
explain	why	one	neuron	responds	to	the	number	2	and
another	to	the	number	3.
How	are	these	millions	of	connections	adjusted?	Just

as	in	the	case	of	prism	glasses!	On	each	trial,	the
network	gives	a	tentative	answer,	is	told	whether	it



made	an	error,	and	adjusts	its	parameters	to	try	to
reduce	this	error	on	the	next	trial.	Every	wrong	answer
provides	valuable	information.	With	its	sign	(like	a
gesture	too	far	to	the	right	or	too	far	to	the	left),	the
error	tells	the	system	what	it	should	have	done	in	order
to	succeed.	By	going	back	to	the	source	of	the	error,
the	machine	discovers	how	the	parameters	should	have
been	set	to	avoid	the	mistake.
Let’s	revisit	the	example	of	the	hunter	adjusting	his

rifle’s	scope.	The	learning	procedure	is	elementary.	The
hunter	shoots	and	finds	he’s	aimed	five	centimeters	too
far	to	the	right.	He	now	has	essential	information,	both
on	the	amplitude	(five	centimeters)	and	on	the	sign	of
the	error	(too	far	to	the	right).	This	information	allows
him	to	correct	his	shot.	If	he	is	a	bit	clever,	he	can	infer
in	which	direction	to	make	the	correction:	if	the	bullet
has	deflected	to	the	right,	he	should	shift	the	scope	one
hair	to	the	left.	Even	if	he’s	not	that	astute,	he	can
casually	try	a	different	aim	and	test	whether,	if	he	turns
the	scope	to	the	right,	the	offset	increases	or
decreases.	In	this	manner,	through	trial	and	error,	the
hunter	can	progressively	discover	which	adjustment
reduces	the	size	of	the	gap	between	his	intended	target
and	his	actual	shot.
In	modifying	his	sight	to	maximize	his	accuracy,	our

brave	hunter	is	applying	a	learning	algorithm	without
even	knowing	it.	He	is	implicitly	calculating	what



mathematicians	call	the	“derivative,”	or	gradient,	of	the
system,	and	is	using	the	“gradient	descent	algorithm”:
he	learns	to	move	his	rifle’s	viewfinder	in	the	most
efficient	direction,	the	one	that	reduces	the	probability
of	making	a	mistake.
Most	artificial	neural	networks	used	in	present-day

artificial	intelligence,	despite	their	millions	of	inputs,
outputs,	and	adjustable	parameters,	operate	just	like
our	proverbial	hunter:	they	observe	their	errors	and	use
them	to	adjust	their	internal	state	in	the	direction	that
they	feel	is	best	able	to	reduce	the	errors.	In	many
cases,	such	learning	is	tightly	guided.	We	tell	the
network	exactly	which	response	it	should	have	activated
at	the	output	(“it	is	a	1,	not	a	7”),	and	we	know
precisely	in	which	direction	to	adjust	the	parameters	if
they	lead	to	an	error	(a	mathematical	calculation	makes
it	possible	to	know	exactly	which	connections	to	modify
when	the	network	activates	the	output	“7”	too	often	in
response	to	an	image	of	the	number	1).	In	machine
learning	parlance,	this	situation	is	known	as	“supervised
learning”	(because	someone,	who	can	be	likened	to	a
supervisor,	knows	the	correct	answer	that	the	system
must	give)	and	“error	backpropagation”	(because	error
signals	are	sent	back	into	the	network	in	order	to
modify	its	parameters).	The	procedure	is	simple:	I	try	an
answer,	I	am	told	what	I	should	have	answered,	I
measure	my	error,	and	I	adjust	my	parameters	to



reduce	it.	At	each	step,	I	make	only	a	small	correction	in
the	right	direction.	That’s	why	such	computer-based
learning	can	be	incredibly	slow:	learning	a	complex
activity,	like	playing	Tetris,	requires	applying	this	recipe
thousands,	millions,	even	billions	of	times.	In	a	space
that	includes	a	multitude	of	adjustable	parameters,	it
can	take	a	long	time	to	discover	the	optimal	setting	for
every	nut	and	bolt.
The	very	first	artificial	neural	networks,	in	the	1980s,

were	already	operating	on	this	principle	of	gradual	error
correction.	Advances	in	computing	have	now	made	it
possible	to	extend	this	idea	to	gigantic	neural	networks,
which	include	hundreds	of	millions	of	adjustable
connections.	These	deep	neural	networks	are
composed	of	a	succession	of	stages,	each	of	which
adapts	to	the	problem	at	hand.	For	example,	figure	4	in
the	color	insert	shows	the	GoogLeNet	system,	derived
from	the	LeNet	architecture	first	proposed	by	LeCun
and	which	won	one	of	the	most	important	international
image	recognition	competitions.	Exposed	to	billions	of
images,	this	system	learned	to	separate	them	into	one
thousand	distinct	categories,	such	as	faces,	landscapes,
boats,	cars,	dogs,	insects,	flowers,	road	signs,	and	so
forth.	Each	level	of	its	hierarchy	has	become	attuned	to
a	useful	aspect	of	reality:	low-level	units	selectively
respond	to	lines	or	textures,	but	the	higher	you	go	up
in	the	hierarchy,	the	more	neurons	have	learned	to



respond	to	complex	features,	such	as	geometric	shapes
(circles,	curves,	stars	…),	parts	of	objects	(a	pants
pocket,	a	car	door	handle,	a	pair	of	eyes	…),	or	even
whole	objects	(buildings,	faces,	spiders	…).3

By	trying	to	minimize	errors,	the	gradient	descent
algorithm	discovered	that	these	forms	are	the	most
useful	for	categorizing	images.	But	if	the	same	network
had	been	exposed	to	book	passages	or	sheet	music,	it
would	have	adjusted	in	a	different	way	and	learned	to
recognize	letters,	notes,	or	whichever	shapes	recur	in
the	new	environment.	Figure	3	in	the	color	insert,	for
example,	shows	how	a	network	of	this	type	self-
organizes	to	recognize	thousands	of	handwritten
digits.4 	At	the	lowest	level,	the	data	are	mixed:	some
images	are	superficially	similar	but	should	ultimately	be
distinguished	(think	of	a	3	and	an	8),	and	conversely,
some	images	that	look	very	different	must	ultimately	be
placed	in	the	same	bin	(think	of	the	many	versions	of
the	digit	8,	with	the	top	loop	open	or	closed,	etc.).	At
each	stage,	the	artificial	neural	network	progresses	in
abstraction	until	all	instances	of	the	same	character	are
correctly	grouped	together.	Through	the	error
reduction	procedure,	it	has	discovered	a	hierarchy	of
features	most	relevant	to	the	problem	of	recognizing
handwritten	digits.	Indeed,	it	is	quite	remarkable	that,
simply	by	correcting	one’s	errors,	it	is	possible	to



discover	a	whole	set	of	clues	appropriate	to	the
problem	at	hand.
Today,	the	concept	of	learning	by	error

backpropagation	remains	at	the	heart	of	many
computer	applications.	This	is	the	workhorse	that	lies
behind	your	smartphone’s	ability	to	recognize	your
voice,	or	your	smart	car’s	emerging	perception	of
pedestrians	and	road	signs—and	it	is	therefore	very
likely	that	our	brain	uses	one	version	of	it	or	the	other.
However,	error	backpropagation	comes	in	various
flavors.	The	field	of	artificial	intelligence	has	made
tremendous	advances	in	thirty	years,	and	researchers
have	discovered	many	tricks	that	facilitate	learning.	We
will	now	review	them—as	we	shall	see,	they	also	tell	us
a	lot	about	ourselves	and	the	way	we	learn.

LEARNING	IS	EXPLORING	THE	SPACE	OF	POSSIBILITIES

One	of	the	problems	with	the	error	correction
procedure	I	just	described	is	that	it	can	get	stuck	on	a
set	of	parameters	that	is	not	the	best.	Imagine	a	golf
ball	rolling	on	the	green,	always	along	the	line	of	the
steepest	slope:	it	may	get	stuck	in	a	small	depression	in
the	ground,	preventing	it	from	reaching	the	lowest
point	of	the	whole	landscape,	the	absolute	optimum.
Similarly,	the	gradient	descent	algorithm	sometimes
gets	stuck	at	a	point	that	it	cannot	exit.	This	is	called	a
“local	minimum”:	a	well	in	parameter	space,	a	trap	from



which	the	learning	algorithm	cannot	escape	because	it
seems	impossible	to	do	better.	At	this	moment,
learning	gets	stuck,	because	all	changes	seem
counterproductive:	each	of	them	increases	the	error
rate.	The	system	feels	that	it	has	learned	all	it	can.	It
remains	blind	to	the	presence	of	much	better	settings,
perhaps	only	a	few	steps	away	in	parameter	space.	The
gradient	descent	algorithm	does	not	“see”	them
because	it	refuses	to	go	up	the	hump	in	order	to	go
back	down	the	other	side	of	the	dip.	Shortsighted,	it
ventures	only	a	small	distance	from	its	starting	point
and	may	therefore	miss	out	on	better	but	distant
configurations.
Does	the	problem	seem	too	abstract	to	you?	Think

about	a	concrete	situation:	You	go	shopping	at	a	food
market,	where	you	spend	some	time	looking	for	the
cheapest	products.	You	walk	down	an	aisle,	pass	the
first	seller	(who	seems	overpriced),	avoid	the	second
(who	is	always	very	expensive),	and	finally	stop	at	the
third	stand,	which	seems	much	cheaper	than	the
previous	ones.	But	who’s	to	say	that	one	aisle	over,	or
perhaps	even	in	the	next	town,	the	prices	would	not	be
even	more	enticing?	Focusing	on	the	best	local	price
does	not	guarantee	finding	the	global	minimum.
Frequently	confronted	with	this	difficulty,	computer

scientists	employ	a	panoply	of	tricks.	Most	of	them
consist	of	introducing	a	bit	of	randomness	in	the	search



for	the	best	parameters.	The	idea	is	simple:	instead	of
looking	in	only	one	aisle	of	the	market,	take	a	step	at
random;	and	instead	of	letting	the	golf	ball	roll	gently
down	the	slope,	give	it	a	shake,	thus	reducing	its
chance	of	getting	stuck	in	a	trough.	On	occasion,
stochastic	search	algorithms	try	a	distant	and	partially
random	setting,	so	that	if	a	better	solution	is	within
reach,	they	have	a	chance	of	finding	it.	In	practice,	one
can	introduce	some	degree	of	randomness	in	various
ways:	setting	or	updating	the	parameters	at	random,
diversifying	the	order	of	the	examples,	adding	some
noise	to	the	data,	or	using	only	a	random	fraction	of	the
connections—all	these	ideas	improve	the	robustness	of
learning.
Some	machine	learning	algorithms	also	get	their

inspiration	from	the	Darwinian	algorithm	that	governs
the	evolution	of	species:	during	parameter
optimization,	they	introduce	mutations	and	random
crossings	of	previously	discovered	solutions.	As	in
biology,	the	rate	of	these	mutations	must	be	carefully
controlled	in	order	to	explore	new	solutions	without
wasting	too	much	time	in	hazardous	attempts.
Another	algorithm	is	inspired	by	blacksmith	forges,

where	craftspeople	have	learned	to	optimize	the
properties	of	metal	by	“annealing”	it.	Applied	when
one	wants	to	forge	an	exceptionally	strong	sword,	the
method	of	annealing	consists	of	heating	the	metal



several	times,	at	lower	and	lower	temperatures,	to
increase	the	chance	that	the	atoms	arrange	themselves
in	a	regular	configuration.	The	process	has	now	been
transposed	to	computer	science:	the	simulated
annealing	algorithm	introduces	random	changes	in	the
parameters,	but	with	a	virtual	“temperature”	that
gradually	decreases.	The	probability	of	a	chance	event
is	high	at	the	beginning	but	steadily	declines	until	the
system	is	frozen	in	an	optimal	setting.
Computer	scientists	have	found	all	these	tricks	to	be

remarkably	effective—so	perhaps	it	should	be	no
surprise	that,	in	the	course	of	evolution,	some	of	them
were	internalized	in	our	brains.	Random	exploration,
stochastic	curiosity,	and	noisy	neuronal	firing	all	play	an
essential	role	in	learning	for	Homo	sapiens.	Whether	we
are	playing	rock,	paper,	scissors;	improvising	on	a	jazz
theme;	or	exploring	the	possible	solutions	to	a	math
problem,	randomness	is	an	essential	ingredient	of	a
solution.	As	we	shall	see,	whenever	children	go	into
learning	mode—that	is,	when	they	play—they	explore
dozens	of	possibilities	with	a	good	dose	of	randomness.
And	during	the	night,	their	brains	continue	juggling
ideas	until	they	hit	upon	one	that	best	explains	what
they	experienced	during	the	day.	In	the	third	section	of
this	book,	I	will	come	back	to	what	we	know	about	the
semi-random	algorithm	that	governs	the	extraordinary



curiosity	of	children—and	the	rare	adults	who	have
managed	to	keep	a	child’s	mind.

LEARNING	IS	OPTIMIZING	A	REWARD	FUNCTION

Remember	LeCun’s	LeNet	system,	which	recognizes	the
shapes	of	numbers?	In	order	to	learn,	this	type	of
artificial	neural	network	needs	to	be	provided	with	the
correct	answers.	For	each	input	image,	it	needs	to	know
which	of	the	ten	possible	numbers	it	corresponds	to.
The	network	can	correct	itself	only	by	calculating	the
difference	between	its	response	and	the	correct	answer.
This	procedure	is	known	as	“supervised	learning”:	a
supervisor,	outside	the	system,	knows	the	solution	and
tries	to	teach	it	to	the	machine.	This	is	effective,	but	it
should	be	noted	that	this	situation,	where	the	right
answer	is	known	in	advance,	is	rather	rare.	When
children	learn	to	walk,	no	one	tells	them	exactly	which
muscles	to	contract—they	are	simply	encouraged	again
and	again	until	they	no	longer	fall.	Babies	learn	solely
on	the	basis	of	an	evaluation	of	the	result:	I	fell,	or,	on
the	contrary,	I	finally	managed	to	walk	across	the	room.
Artificial	intelligence	faces	the	same	“unsupervised

learning”	problem.	When	a	machine	learns	to	play	a
video	game,	for	example,	the	only	thing	it	is	told	is	that
it	must	try	to	attain	the	highest	score.	No	one	tells	it	in
advance	what	specific	actions	need	to	be	taken	to



achieve	this.	How	can	it	quickly	find	out	for	itself	the
right	way	of	going	about	it?
Scientists	have	responded	to	this	challenge	by

inventing	“reinforcement	learning,”	whereby	we	do	not
provide	the	system	with	any	detail	about	what	it	must
do	(nobody	knows!),	but	only	with	a	“reward,”	an
evaluation	in	the	form	of	a	quantitative	score.5 	Even
worse,	the	machine	may	receive	its	score	after	a	delay,
long	after	the	decisive	actions	that	led	to	it.	Such
delayed	reinforcement	learning	is	the	principle	by	which
the	company	DeepMind,	a	Google	subsidiary,	created
a	machine	capable	of	playing	chess,	checkers,	and	Go.
The	problem	is	colossal	for	a	simple	reason:	it	is	only	at
the	very	end	that	the	system	receives	a	single	reward
signal,	indicating	whether	the	game	was	won	or	lost.
During	the	game	itself,	the	system	receives	no	feedback
whatsoever—only	the	final	checkmate	counts.	How,
then,	can	the	system	figure	out	what	to	do	at	any	given
time?	And,	once	the	final	score	is	known,	how	can	the
machine	retrospectively	evaluate	its	decisions?
The	trick	that	computer	scientists	have	found	is	to

program	the	machine	to	do	two	things	at	the	same
time:	to	act	and	to	self-evaluate.	One	half	of	the
system,	called	the	“critic,”	learns	to	predict	the	final
score.	The	goal	of	this	network	of	artificial	neurons	is	to
evaluate,	as	accurately	as	possible,	the	state	of	the
game,	in	order	to	predict	the	final	reward:	Am	I	winning



or	losing?	Is	my	balance	stable,	or	am	I	about	to	fall?
Thanks	to	this	critic	that	emerges	in	this	half	of	the
machine,	the	system	can	evaluate	its	actions	at	every
moment	and	not	just	at	the	end.	The	other	half	of	the
machine,	the	actor,	can	then	use	this	evaluation	to
correct	itself:	Wait!	I’d	better	avoid	this	or	that	action,
because	the	critic	thinks	it	will	increase	my	chances	of
losing.
Trial	after	trial,	the	actor	and	the	critic	progress

together:	one	learns	to	act	wisely,	focusing	on	the	most
effective	actions,	while	the	other	learns	to	evaluate,
ever	more	sharply,	the	consequences	of	these	acts.	In
the	end,	unlike	the	famed	guy	who	is	falling	from	a
skyscraper	and	exclaims,	“So	far,	so	good,”	the	actor-
critic	network	becomes	endowed	with	a	remarkable
prescience:	the	ability	to	predict,	within	the	vast	seas	of
not-yet-lost	games,	those	that	are	likely	to	be	won	and
those	that	will	lead	only	to	disaster.
The	actor-critic	combination	is	one	of	the	most

effective	strategies	of	contemporary	artificial
intelligence.	When	backed	by	a	hierarchical	neural
network,	it	works	wonders.	As	early	as	the	1980s,	it
enabled	a	neural	network	to	win	the	backgammon
world	cup.	More	recently,	it	enabled	DeepMind	to
create	a	multifunctional	neural	network	capable	of
learning	to	play	all	kinds	of	video	games	such	as	Super
Mario	and	Tetris.6 	One	simply	gives	this	system	the



pixels	of	the	image	as	an	input,	the	possible	actions	as
an	output,	and	the	score	of	the	game	as	a	reward
function.	The	machine	learns	everything	else.	When	it
plays	Tetris,	it	discovers	that	the	screen	is	made	up	of
shapes,	that	the	falling	one	is	more	important	than	the
others,	that	various	actions	can	change	its	orientation
and	its	position,	and	so	on	and	so	forth—until	the
machine	turns	into	an	artificial	player	of	formidable
effectiveness.	And	when	it	plays	Super	Mario,	the
change	in	inputs	and	rewards	teaches	it	to	attend	to
completely	different	settings:	what	pixels	form	Mario’s
body,	how	he	moves,	where	the	enemies	are,	the
shapes	of	walls,	doors,	traps,	bonuses	…	and	how	to
act	in	front	of	each	of	them.	By	adjusting	its	parameters,
i.e.,	the	millions	of	connections	that	link	the	layers
together,	a	single	network	can	adapt	to	all	kinds	of
games	and	learn	to	recognize	the	shapes	of	Tetris,	Pac-
Man,	or	Sonic	the	Hedgehog.
What	is	the	point	of	teaching	a	machine	to	play	video

games?	Two	years	later,	DeepMind	engineers	used
what	they	had	learned	from	game	playing	to	solve	an
economic	problem	of	vital	interest:	How	should	Google
optimize	the	management	of	its	computer	servers?	The
artificial	neural	network	remained	similar;	the	only
things	that	changed	were	the	inputs	(date,	time,
weather,	international	events,	search	requests,	number
of	people	connected	to	each	server,	etc.),	the	outputs



(turn	on	or	off	this	or	that	server	on	various	continents),
and	the	reward	function	(consume	less	energy).	The
result	was	an	instant	drop	in	power	consumption.
Google	reduced	its	energy	bill	by	up	to	40	percent	and
saved	tens	of	millions	of	dollars—even	after	myriad
specialized	engineers	had	already	tried	to	optimize
those	very	servers.	Artificial	intelligence	has	truly
reached	levels	of	success	that	can	turn	whole	industries
upside	down.
DeepMind	has	achieved	even	more	amazing	feats.	As

everyone	probably	knows,	its	AlphaGo	program
managed	to	beat	eighteen-time	world	champion	Lee
Sedol	in	the	game	of	Go,	considered	until	very	recently
the	Everest	of	artificial	intelligence.7 	This	game	is
played	on	a	vast	square	checkerboard	(a	goban)	with
nineteen	positions	on	each	side,	for	a	total	of	361
places	where	black	and	white	pieces	can	be	played.
The	number	of	combinations	is	so	vast	that	it	is	strictly
impossible	to	systematically	explore	all	the	future
moves	available	to	each	player.	And	yet	reinforcement
learning	allowed	the	AlphaGo	software	to	recognize
favorable	and	unfavorable	combinations	better	than	any
human	player.	One	of	the	many	tricks	was	to	make	the
system	play	against	itself,	just	as	a	chess	player	trains	by
playing	both	white	and	black.	The	idea	is	simple:	at	the
end	of	each	game,	the	winning	software	strengthens	its



actions,	while	the	loser	weakens	them—but	both	have
also	learned	to	evaluate	their	moves	more	efficiently.
We	happily	mock	Baron	Munchausen,	who,	in	his

fabled	Adventures,	foolishly	attempts	to	fly	away	by
pulling	on	his	bootstraps.	In	artificial	intelligence,
however,	Munchausen’s	mad	method	gave	birth	to	a
rather	sophisticated	strategy,	aptly	called
“bootstrapping”—little	by	little,	starting	from	a
meaningless	architecture	devoid	of	knowledge,	a	neural
network	can	become	a	world	champion,	simply	by
playing	against	itself.
This	idea	of	increasing	the	speed	of	learning	by

letting	two	networks	collaborate—or,	on	the	contrary,
compete—continues	to	lead	to	major	advances	in
artificial	intelligence.	One	of	the	most	recent	ideas,
called	“adversarial	learning,”8 	consists	of	training	two
opponent	systems:	one	that	learns	to	become	an	expert
(say,	in	Van	Gogh’s	paintings)	and	another	whose	sole
goal	is	to	make	the	first	one	fail	(by	learning	to	become
a	brilliant	forger	of	false	Van	Goghs).	The	first	system
gets	a	bonus	whenever	it	successfully	identifies	a
genuine	Van	Gogh	painting,	while	the	second	is
rewarded	whenever	it	manages	to	fool	the	other’s
expert	eye.	This	adversarial	learning	algorithm	yields
not	just	one	but	two	artificial	intelligences:	a	world
authority	in	Van	Gogh,	fond	of	the	smallest	details	that
can	authenticate	a	true	painting	by	the	master,	and	a



genius	forger,	capable	of	producing	paintings	that	can
fool	the	best	of	experts.	This	sort	of	training	can	be
likened	to	the	preparation	for	a	presidential	debate:	a
candidate	can	sharpen	her	training	by	hiring	someone
to	imitate	her	opponent’s	best	lines.
Could	this	approach	apply	to	a	single	human	brain?

Our	two	hemispheres	and	numerous	subcortical	nuclei
also	host	a	whole	collection	of	experts	who	fight,
coordinate,	and	evaluate	one	another.	Some	of	the
areas	in	our	brain	learn	to	simulate	what	others	are
doing;	they	allow	us	to	foresee	and	imagine	the	results
of	our	actions,	sometimes	with	a	realism	worthy	of	the
best	counterfeiters:	our	memory	and	imagination	can
make	us	see	the	seaside	bay	where	we	swam	last
summer,	or	the	door	handle	that	we	grab	in	the	dark.
Some	areas	learn	to	criticize	others:	they	constantly
assess	our	abilities	and	predict	the	rewards	or
punishments	we	might	get.	These	are	the	areas	that
push	us	to	act	or	to	remain	silent.	We	will	also	see	that
metacognition—the	ability	to	know	oneself,	to	self-
evaluate,	to	mentally	simulate	what	would	happen	if	we
acted	this	way	or	that	way—plays	a	fundamental	role	in
human	learning.	The	opinions	we	form	of	ourselves
help	us	progress	or,	in	some	cases,	lock	us	into	a
vicious	circle	of	failure.	Thus,	it	is	not	inappropriate	to
think	of	the	brain	as	a	collection	of	experts	that
collaborate	and	compete.



LEARNING	IS	RESTRICTING	SEARCH	SPACE

Contemporary	artificial	intelligence	still	faces	a	major
problem.	The	more	parameters	the	internal	model	has,
the	more	difficult	it	is	to	find	the	best	way	to	adjust	it.
And	in	current	neural	networks,	the	search	space	is
immense.	Computer	scientists	therefore	have	to	deal
with	a	massive	combinatorial	explosion:	at	each	stage,
millions	of	choices	are	available,	and	their	combinations
are	so	vast	that	it	is	impossible	to	explore	them	all.	As	a
result,	learning	is	sometimes	exceedingly	slow:	it	takes
billions	of	attempts	to	move	the	system	in	the	right
direction	within	this	immense	landscape	of	possibilities.
And	the	data,	however	large,	become	scarce	relative	to
the	gigantic	size	of	that	space.	This	issue	is	called	the
“curse	of	dimensionality”—learning	can	become	very
hard	when	you	have	millions	of	potential	levers	to	pull.
The	immense	number	of	parameters	that	neural

networks	possess	often	leads	to	a	second	obstacle,
which	is	called	“overfitting”	or	“overlearning”:	the
system	has	so	many	degrees	of	freedom	that	it	finds	it
easier	to	memorize	all	the	details	of	each	example	than
it	is	to	identify	a	more	general	rule	that	can	explain
them.
As	John	von	Neumann	(1903–57),	the	father	of

computer	science,	famously	said,	“With	four	parameters
I	can	fit	an	elephant,	and	with	five	I	can	make	him
wiggle	his	trunk.”	What	he	meant	is	that	having	too



many	free	parameters	can	be	a	curse:	it’s	all	too	easy	to
“overfit”	any	data	simply	by	memorizing	every	detail,
but	that	does	not	mean	that	the	resulting	system
captures	anything	significant.	You	can	fit	the
pachyderm’s	profile	without	understanding	anything
deep	about	elephants	as	a	species.	Having	too	many
free	parameters	can	be	detrimental	to	abstraction.
While	the	system	easily	learns,	it	is	unable	to	generalize
to	new	situations.	Yet	this	ability	to	generalize	is	the	key
to	learning.	What	would	be	the	point	of	a	machine	that
could	recognize	a	picture	that	it	has	already	seen,	or
win	a	game	of	Go	that	it	has	already	played?	Obviously,
the	real	aim	is	to	recognize	any	picture,	or	to	win
against	any	player,	whether	the	circumstances	are
familiar	or	new.
Again,	computer	scientists	are	investigating	various

solutions	to	these	problems.	One	of	the	most	effective
interventions,	which	can	both	accelerate	learning	and
improve	generalization,	is	to	simplify	the	model.	When
the	number	of	parameters	to	be	adjusted	is	minimized,
the	system	can	be	forced	to	find	a	more	general
solution.	This	is	the	key	insight	that	led	LeCun	to	invent
convolutional	neural	networks,	an	artificial	learning
device	which	has	become	ubiquitous	in	the	field	of
image	recognition.9 	The	idea	is	simple:	in	order	to
recognize	the	items	in	a	picture,	you	pretty	much	have
to	do	the	same	job	everywhere.	In	a	photo,	for



example,	faces	may	appear	anywhere.	To	recognize
them,	one	should	apply	the	same	algorithm	to	every
part	of	the	picture	(e.g.,	to	look	for	an	oval,	a	pair	of
eyes,	etc.).	There	is	no	need	to	learn	a	different	model
at	each	point	of	the	retina:	what	is	learned	in	one	place
can	be	reused	everywhere	else.
Over	the	course	of	learning,	LeCun’s	convolutional

neural	networks	apply	whatever	they	learn	from	a	given
region	to	the	entire	network,	at	all	levels	and	on	ever
wider	scales.	They	therefore	have	a	much	smaller
number	of	parameters	to	learn:	by	and	large,	the
system	has	to	tune	only	a	single	filter	that	it	applies
everywhere,	rather	than	a	plethora	of	different
connections	for	each	location	in	the	image.	This	simple
trick	massively	improves	performance,	especially
generalization	to	new	images.	The	reason	is	simple:	the
algorithm	that	runs	on	a	new	image	benefits	from	the
immense	experience	it	gained	from	every	point	of	every
photo	that	it	has	ever	seen.	It	also	speeds	up	learning,
since	the	machine	explores	only	a	subset	of	vision
models.	Prior	to	learning,	it	already	knows	something
important	about	the	world:	that	the	same	object	can
appear	anywhere	in	the	image.
This	trick	generalizes	to	many	other	domains.	To

recognize	speech,	for	example,	one	must	abstract	away
from	the	specifics	of	the	speaker’s	voice.	This	is
achieved	by	forcing	a	neural	network	to	use	the	same



connections	in	different	frequency	bands,	whether	the
voice	is	low	or	high.	Reducing	the	number	of
parameters	that	must	be	adjusted	leads	to	greater
speeds	and	better	generalization	to	new	voices:	the
advantage	is	twofold,	and	this	is	how	your	smartphone
is	able	to	respond	to	your	voice.

LEARNING	IS	PROJECTING	A	PRIORI	HYPOTHESES

Yann	LeCun’s	strategy	provides	a	good	example	of	a
much	more	general	notion:	the	exploitation	of	innate
knowledge.	Convolutional	neural	networks	learn	better
and	faster	than	other	types	of	neural	networks	because
they	do	not	learn	everything.	They	incorporate,	in	their
very	architecture,	a	strong	hypothesis:	what	I	learn	in
one	place	can	be	generalized	everywhere	else.
The	main	problem	with	image	recognition	is

invariance:	I	have	to	recognize	an	object,	whatever	its
position	and	size,	even	if	it	moves	to	the	right	or	left,
farther	or	closer.	It	is	a	challenge,	but	it	is	also	a	very
strong	constraint:	I	can	expect	the	very	same	clues	to
help	me	recognize	a	face	anywhere	in	space.	By
replicating	the	same	algorithm	everywhere,
convolutional	networks	effectively	exploit	this
constraint:	they	integrate	it	into	their	very	structure.
Innately,	prior	to	any	learning,	the	system	already
“knows”	this	key	property	of	the	visual	world.	It	does



not	learn	invariance,	but	assumes	it	a	priori	and	uses	it
to	reduce	the	learning	space—clever	indeed!
The	moral	here	is	that	nature	and	nurture	should	not

be	opposed.	Pure	learning,	in	the	absence	of	any	innate
constraints,	simply	does	not	exist.	Any	learning
algorithm	contains,	in	one	way	or	another,	a	set	of
assumptions	about	the	domain	to	be	learned.	Rather
than	trying	to	learn	everything	from	scratch,	it	is	much
more	effective	to	rely	on	prior	assumptions	that	clearly
delineate	the	basic	laws	of	the	domain	that	must	be
explored,	and	integrate	these	laws	into	the	very
architecture	of	the	system.	The	more	innate
assumptions	there	are,	the	faster	learning	is	(provided,
of	course,	that	these	assumptions	are	correct!).	This	is
universally	true.	It	would	be	wrong,	for	example,	to
think	that	the	AlphaGo	Zero	software,	which	trained
itself	in	Go	by	playing	against	itself,	started	from
nothing:	its	initial	representation	included,	among	other
things,	knowledge	of	the	topography	and	symmetries
of	the	game,	which	divided	the	search	space	by	a	factor
of	eight.
Our	brain	too	is	molded	with	assumptions	of	all	kinds.

Shortly,	we	will	see	that,	at	birth,	babies’	brains	are
already	organized	and	knowledgeable.	They	know,
implicitly,	that	the	world	is	made	of	things	that	move
only	when	pushed,	without	ever	interpenetrating	each
other	(solid	objects)—and	also	that	it	contains	much



stranger	entities	that	speak	and	move	by	themselves
(people).	No	need	to	learn	these	laws:	since	they	are
true	everywhere	humans	live,	our	genome	hardwires
them	into	the	brain,	thus	constraining	and	speeding	up
learning.	Babies	do	not	have	to	learn	everything	about
the	world:	their	brains	are	full	of	innate	constraints,	and
only	the	specific	parameters	that	vary	unpredictably
(such	as	face	shape,	eye	color,	tone	of	voice,	and
individual	tastes	of	the	people	around	them)	remain	to
be	acquired.
Again,	nature	and	nurture	need	not	be	opposed.	If

the	baby’s	brain	knows	the	difference	between	people
and	inanimate	objects,	it	is	because,	in	a	sense,	it	has
learned	this—not	in	the	first	few	days	of	its	life,	but	in
the	course	of	millions	of	years	of	evolution.	Darwinian
selection	is,	in	effect,	a	learning	algorithm—an
incredibly	powerful	program	that	has	been	running	for
hundreds	of	millions	of	years,	in	parallel,	across	billions
of	learning	machines	(every	creature	that	ever	lived).10

We	are	the	heirs	of	an	unfathomable	wisdom.	Through
Darwinian	trial	and	error,	our	genome	has	internalized
the	knowledge	of	the	generations	that	have	preceded
us.	This	innate	knowledge	is	of	a	different	type	than	the
specific	facts	that	we	learn	during	our	lifetime:	it	is
much	more	abstract,	because	it	biases	our	neural
networks	to	respect	the	fundamental	laws	of	nature.



In	brief,	during	pregnancy,	our	genes	lay	down	a
brain	architecture	that	guides	and	accelerates
subsequent	learning	by	imposing	restrictions	on	the
size	of	the	explored	space.	In	computer-science	lingo,
one	may	say	that	genes	set	up	the	“hyperparameters”
of	the	brain:	the	high-level	variables	that	specify	the
number	of	layers,	the	types	of	neurons,	the	general
shape	of	their	interconnections,	whether	they	are
duplicated	at	any	point	on	the	retina,	and	so	on	and	so
forth.	Because	many	of	these	variables	are	stored	in	our
genome,	we	no	longer	need	to	learn	them:	our	species
internalized	them	as	it	evolved.
Our	brain	is	therefore	not	simply	passively	subjected

to	sensory	inputs.	From	the	get-go,	it	already	possesses
a	set	of	abstract	hypotheses,	an	accumulated	wisdom
that	emerged	through	the	sift	of	Darwinian	evolution
and	which	it	now	projects	onto	the	outside	world.	Not
all	scientists	agree	with	this	idea,	but	I	consider	it	a
central	point:	the	naive	empiricist	philosophy
underlying	many	of	today’s	artificial	neural	networks	is
wrong.	It	is	simply	not	true	that	we	are	born	with
completely	disorganized	circuits	devoid	of	any
knowledge,	which	later	receive	the	imprint	of	their
environment.	Learning,	in	man	and	machine,	always
starts	from	a	set	of	a	priori	hypotheses,	which	are
projected	onto	the	incoming	data,	and	from	which	the
system	selects	those	that	are	best	suited	to	the	current



environment.	As	Jean-Pierre	Changeux	stated	in	his
best-selling	book	Neuronal	Man	(1985),	“To	learn	is	to
eliminate.”







CHAPTER	2

Why	Our	Brain	Learns	Better	Than
Current	Machines

THE	RECENT	SURGE	OF	PROGRESS	IN	ARTIFICIAL	INTELLIGENCE
MAY	SUGGEST	that	we	have	finally	discovered	how	to
copy	and	even	surpass	human	learning	and
intelligence.	According	to	some	self-proclaimed
prophets,	machines	are	about	to	overtake	us.	Nothing
could	be	further	from	the	truth.	In	fact,	most	cognitive
scientists,	while	admiring	recent	advances	in	artificial
neural	networks,	are	well	aware	of	the	fact	that	these
machines	remain	highly	limited.	In	truth,	most	artificial
neural	networks	implement	only	the	operations	that	our
brain	performs	unconsciously,	in	a	few	tenths	of	a
second,	when	it	perceives	an	image,	recognizes	it,
categorizes	it,	and	accesses	its	meaning.1 	However,
our	brain	goes	much	further:	it	is	able	to	explore	the
image	consciously,	carefully,	step	by	step,	for	several
seconds.	It	formulates	symbolic	representations	and
explicit	theories	of	the	world	that	we	can	share	with
others	through	language.
Operations	of	this	nature—slow,	reasoned,	symbolic

—remain	(for	now)	the	exclusive	privilege	of	our



species.	Current	machine	learning	algorithms	capture
them	poorly.	Although	there	is	constant	progress	in	the
fields	of	machine	translation	and	logical	reasoning,	a
common	criticism	of	artificial	neural	networks	is	that
they	attempt	to	learn	everything	at	the	same	level,	as	if
every	problem	were	a	matter	of	automatic	classification.
To	a	man	with	a	hammer,	everything	looks	like	a	nail!
But	our	brain	is	much	more	flexible.	It	quickly	manages
to	prioritize	information	and,	whenever	possible,	extract
general,	logical,	and	explicit	principles.

WHAT	IS	ARTIFICIAL	INTELLIGENCE	MISSING?

It	is	interesting	to	try	to	clarify	what	artificial	intelligence
is	still	missing,	because	this	is	also	a	way	to	identify
what	is	unique	about	our	species’	learning	abilities.
Here	is	a	short	and	probably	still	partial	list	of	functions
that	even	a	baby	possesses	and	that	most	current
artificial	systems	are	missing:

Learning	abstract	concepts.	Most	artificial
neural	networks	capture	only	the	very	first	stages
of	information	processing—those	that,	in	less
than	a	fifth	of	a	second,	parse	an	image	in	the
visual	areas	of	our	brain.	Deep	learning
algorithms	are	far	from	being	as	deep	as	some
people	claim.	According	to	Yoshua	Bengio,	one
of	the	inventors	of	deep	learning	algorithms,



they	actually	tend	to	learn	superficial	statistical
regularities	in	data,	rather	than	high-level
abstract	concepts.2 	To	recognize	an	object,	for
instance,	they	often	rely	on	the	presence	of	a	few
shallow	features	in	the	image,	such	as	a	specific
color	or	shape.	Change	these	details	and	their
performance	collapses:	contemporary
convolutional	neural	networks	are	unable	to
recognize	what	constitutes	the	essence	of	an
object;	they	have	difficulty	understanding	that	a
chair	remains	a	chair	whether	it	has	four	legs	or
just	one,	and	whether	it	is	made	of	glass,	metal,
or	inflatable	plastic.	This	inclination	to	attend	to
superficial	features	makes	these	networks
susceptible	to	massive	errors.	There	is	a	whole
literature	on	how	to	fool	a	neural	network:	take	a
banana	and	modify	a	few	pixels	or	put	a
particular	sticker	on	it,	and	the	neural	network
will	think	it’s	a	toaster!
True	enough,	when	you	flash	an	image	to	a

person	for	a	split	second,	they	will	sometimes
make	the	same	kinds	of	errors	as	a	machine	and
may	mistake	a	dog	for	a	cat.3 	However,	as	soon
as	humans	are	given	a	little	more	time,	they
correct	their	errors.	Unlike	a	computer,	we
possess	the	ability	to	question	our	beliefs	and
refocus	our	attention	on	those	aspects	of	an



image	that	do	not	fit	with	our	first	impression.
This	second	analysis,	conscious	and	intelligent,
calls	upon	our	general	powers	of	reasoning	and
abstraction.	Artificial	neural	networks	neglect	an
essential	point:	human	learning	is	not	just	the
setting	of	a	pattern-recognition	filter,	but	the
forming	of	an	abstract	model	of	the	world.	By
learning	to	read,	for	example,	we	have	acquired
an	abstract	concept	of	each	letter	of	the
alphabet,	which	allows	us	to	recognize	it	in	all	its
disguises,	as	well	as	generate	new	versions:

The	cognitive	scientist	Douglas	Hofstadter
once	said	that	the	real	challenge	for	artificial
intelligence	was	to	recognize	the	letter	A!	This
quip	was	undoubtedly	an	exaggeration,	but	a
profound	one	nevertheless:	even	in	this	most
trivial	context,	humans	deploy	an	unmatched
knack	for	abstraction.	This	feat	is	at	the	origin	of
an	amusing	occurrence	of	daily	life:	the
CAPTCHA,	the	little	chain	of	letters	that	some
websites	ask	you	to	recognize	in	order	to	prove
you	are	a	human	being,	not	a	machine.	For
years,	CAPTCHAs	have	withstood	machines.	But
computer	science	is	evolving	fast:	in	2017,	an



artificial	system	managed	to	recognize
CAPTCHAs	at	an	almost	humanlike	level.4

Unsurprisingly,	this	algorithm	mimics	the	human
brain	in	several	respects.	A	genuine	tour	de
force,	it	manages	to	extract	the	skeleton	of	each
letter,	the	inner	essence	of	the	letter	A,	and	uses
all	the	resources	of	statistical	reasoning	to	verify
whether	this	abstract	idea	applies	to	the	current
image.	Yet	this	computer	algorithm,	however
sophisticated,	applies	only	to	CAPTCHAs.	Our
brains	apply	this	ability	for	abstraction	to	all
aspects	of	our	daily	lives.
Data-efficient	learning.	Everyone	agrees	that

today’s	neural	networks	learn	far	too	slowly:	they
need	thousands,	millions,	even	billions	of	data
points	to	develop	an	intuition	of	a	domain.	We
even	have	experimental	evidence	of	this
sluggishness.	For	instance,	it	takes	no	less	than
nine	hundred	hours	of	play	for	the	neural
network	designed	by	DeepMind	to	reach	a
reasonable	level	on	an	Atari	console—while	a
human	being	reaches	the	same	level	in	two
hours!5 	Another	example	is	language	learning.
Psycholinguist	Emmanuel	Dupoux	estimates	that
in	most	French	families,	children	hear	about	five
hundred	to	one	thousand	hours	of	speech	per
year,	which	is	more	than	enough	for	them	to



acquire	Descartes’s	patois,	including	such	quirks
as	soixante-douze	or	s’il	vous	plaît.	However,
among	the	Tsimane,	an	indigenous	population	of
the	Bolivian	Amazon,	children	hear	only	sixty
hours	of	speech	per	year—and	remarkably,	this
limited	experience	does	not	prevent	them	from
becoming	excellent	speakers	of	the	Tsimane
language.	In	comparison,	the	best	current
computer	systems	from	Apple,	Baidu,	and
Google	require	anywhere	between	twenty	and	a
thousand	times	more	data	in	order	to	attain	a
modicum	of	language	competence.	In	the	field
of	learning,	the	effectiveness	of	the	human	brain
remains	unmatched:	machines	are	data	hungry,
but	humans	are	data	efficient.	Learning,	in	our
species,	makes	the	most	from	the	least	amount
of	data.
Social	learning.	Our	species	is	the	only	one

that	voluntarily	shares	information:	we	learn	a	lot
from	our	fellow	humans	through	language.	This
ability	remains	beyond	the	reach	of	current
neural	networks.	In	these	models,	knowledge	is
encrypted,	diluted	in	the	values	of	hundreds	of
millions	of	synaptic	weights.	In	this	hidden,
implicit	form,	it	cannot	be	extracted	and
selectively	shared	with	others.	In	our	brains,	by
contrast,	the	highest-level	information,	which



reaches	our	consciousness,	can	be	explicitly
stated	to	others.	Conscious	knowledge	comes
with	verbal	reportability:	whenever	we
understand	something	in	a	sufficiently
perspicuous	manner,	a	mental	formula	resonates
in	our	language	of	thought,	and	we	can	use	the
words	of	language	to	report	it.	The	extraordinary
efficiency	with	which	we	manage	to	share	our
knowledge	with	others,	using	a	minimum
number	of	words	(“To	get	to	the	market,	turn
right	on	the	small	street	behind	the	church.”),
remains	unequalled,	in	the	animal	kingdom	as	in
the	computer	world.
One-trial	learning.	An	extreme	case	of	this

efficiency	is	when	we	learn	something	new	on	a
single	trial.	If	I	introduce	a	new	verb,	let’s	say
purget,	even	only	once,	it	will	be	enough	for	you
to	use	it.	Of	course,	some	artificial	neural
networks	are	also	capable	of	storing	a	specific
episode.	But	what	machines	cannot	yet	do	well,
and	that	the	human	brain	succeeds	in	doing
wonderfully,	is	integrate	new	information	within
an	existing	network	of	knowledge.	You	not	only
memorize	the	new	verb	purget,	but	you
immediately	know	how	to	conjugate	it	and	insert
it	into	other	sentences:	Do	you	ever	purget?	I
purgot	it	yesterday.	Have	you	ever	purgotten?



Purgetting	is	a	problem.	When	I	say,	“Let’s
purget	tomorrow,”	you	don’t	just	learn	a	word—
you	also	insert	it	into	a	vast	system	of	symbols
and	rules:	it	is	a	verb	with	irregular	past	tense
(purgot,	purgotten)	and	a	typical	conjugation	in
the	present	tense	(I	purget,	you	purget,	she
purgets,	etc.).	To	learn	is	to	succeed	in	inserting
new	knowledge	into	an	existing	network.
Systematicity	and	the	language	of	thought.

Grammar	rules	are	just	one	example	of	a
particular	talent	in	our	brain:	the	ability	to
discover	the	general	laws	that	lie	behind	specific
cases.	Whether	it	is	in	mathematics,	language,
science,	or	music,	the	human	brain	manages	to
extract	very	abstract	principles,	systematic	rules
that	it	can	reapply	in	many	different	contexts.
Take	arithmetic,	for	example:	our	ability	to	add
two	numbers	is	extremely	general—once	we
have	learned	this	procedure	with	small	numbers,
we	can	systematize	it	to	arbitrarily	large
numbers.	Better	yet,	we	can	draw	inferences	of
extraordinary	generality.	Many	children,	around
five	or	six	years	of	age,	discover	that	each
number	n	has	a	successor	n	+	1,	and	that	the
sequence	of	whole	numbers	is	therefore	infinite
—there	is	no	greatest	number.	I	still	remember,
with	emotion,	the	moment	when	I	became	aware



of	this—it	was,	in	reality,	my	first	mathematical
theorem.	What	extraordinary	powers	of
abstraction!	How	does	our	brain,	which	includes
a	finite	number	of	neurons,	manage	to
conceptualize	infinity?
Present-day	artificial	neural	networks	cannot

represent	an	abstract	law	as	simple	as	“every
number	has	a	successor.”	Absolute	truths	are	not
their	cup	of	tea.	Systematicity,6 	the	ability	to
generalize	on	the	basis	of	a	symbolic	rule	rather
than	a	superficial	resemblance,	still	eludes	most
current	algorithms.	Ironically,	so-called	deep
learning	algorithms	are	almost	entirely	incapable
of	any	profound	insight.
Our	brain,	on	the	other	hand,	seems	to	have	a

flowing	ability	to	conceive	formulas	in	a	kind	of
mental	language.	For	instance,	it	can	express	the
concept	of	an	infinite	set	because	it	possesses	an
internal	language	endowed	with	such	abstract
functions	as	negation	and	quantification	(infinite
=	not	finite	=	beyond	any	number).	The
American	philosopher	Jerry	Fodor	(1935–2017)
theorized	this	ability:	he	postulated	that	our
thinking	consists	of	symbols	that	combine
according	to	the	systematic	rules	of	a	“language
of	thought.”7 	Such	a	language	owes	its	power
to	its	recursive	nature:	each	newly	created	object



(say,	the	concept	of	infinity)	can	immediately	be
reused	in	new	combinations,	without	limits.	How
many	infinities	are	there?	Such	is	the	seemingly
absurd	question	that	the	mathematician	Georg
Cantor	(1845–1918)	asked	himself,	which	led	him
to	formulate	the	theory	of	transfinite	numbers.
The	ability	to	“make	infinite	use	of	finite	means,”
according	to	Wilhelm	von	Humboldt	(1767–
1835),	characterizes	human	thought.
Some	computer-science	models	try	to	capture

the	acquisition	of	abstract	mathematical	rules	in
children—but	to	do	so,	they	have	to	incorporate
a	very	different	form	of	learning,	one	that
involves	rules	and	grammars	and	manages	to
quickly	select	the	shortest	and	most	plausible	of
them.8 	In	this	view,	learning	becomes	similar	to
programming:	it	consists	of	selecting	the
simplest	internal	formula	that	fits	the	data,
among	all	those	available	in	the	language	of
thought.
Current	neural	networks	are	largely	unable	to

represent	the	range	of	abstract	phrases,
formulas,	rules,	and	theories	with	which	the
Homo	sapiens	brain	models	the	world.	This	is
probably	no	coincidence:	there	is	something
profoundly	human	about	this,	something	that	is
not	found	in	the	brains	of	other	animal	species,



and	that	contemporary	neuroscience	has	not	yet
managed	to	address—a	genuinely	singular
aspect	of	our	species.	Among	primates,	our	brain
seems	to	be	the	only	one	to	represent	sets	of
symbols	that	combine	according	to	a	complex
and	arborescent	syntax.9 	My	laboratory,	for
example,	has	shown	that	the	human	brain	cannot
help	hearing	a	series	of	sounds	such	as	beep
beep	beep	boop	without	immediately	theorizing
the	underlying	abstract	structure	(three	identical
sounds	followed	by	a	different	one).	Placed	in
the	same	situation,	a	monkey	detects	a	series	of
four	sounds,	realizes	that	the	last	is	different,	but
does	not	seem	to	integrate	this	piecewise
knowledge	into	a	single	formula;	we	know	this
because	when	we	examine	their	brain	activity,
we	see	distinct	circuits	activate	for	number	and
for	sequence,	but	never	observe	the	integrated
pattern	of	activity	that	we	find	in	the	human
language	area	called	“Broca’s	area.”10

Similarly,	it	takes	tens	of	thousands	of	trials
before	a	monkey	understands	how	to	reverse	the
order	of	a	sequence	(from	ABCD	to	DCBA),	while
for	a	four-year-old	human,	five	trials	are
enough.11 	Even	a	baby	of	a	few	months	of	age
already	encodes	the	external	world	using
abstract	and	systematic	rules—an	ability	that



completely	eludes	both	conventional	artificial
neural	networks	and	other	primate	species.
Composition.	Once	I	have	learned,	say,	to	add

two	numbers,	this	skill	becomes	an	integral	part
of	my	repertoire	of	talents:	it	becomes
immediately	available	to	address	all	my	other
goals.	I	can	use	it	as	a	subroutine	in	dozens	of
different	contexts,	for	example,	to	pay	the
restaurant	bill	or	to	check	my	tax	forms.	Above
all,	I	can	recombine	it	with	other	learned	skills—I
have	no	difficulty,	for	example,	following	an
algorithm	that	asks	me	to	take	a	number,	add
two,	and	decide	whether	it	is	now	larger	or
smaller	than	five.12

It	is	surprising	that	current	neural	networks	do
not	yet	show	this	flexibility.	The	knowledge	that
they	have	learned	remains	confined	in	hidden,
inaccessible	connections,	thus	making	it	very
difficult	to	reuse	in	other,	more	complex	tasks.
The	ability	to	compose	previously	learned	skills,
that	is,	to	recombine	them	in	order	to	solve	new
problems,	is	beyond	these	models.	Today’s
artificial	intelligence	solves	only	extremely
narrow	problems:	the	AlphaGo	software,	which
can	defeat	any	human	champion	in	Go,	is	a
stubborn	expert,	unable	to	generalize	its	talents
to	any	other	game	even	slightly	different



(including	the	game	of	Go	on	a	fifteen-by-fifteen
board	rather	than	the	standard	nineteen-by-
nineteen	goban).	In	the	human	brain,	on	the
other	hand,	learning	almost	always	means
rendering	knowledge	explicit,	so	that	it	can	be
reused,	recombined,	and	explained	to	others.
Here	again,	we	are	dealing	with	a	singular	aspect
of	the	human	brain,	linked	to	language	and
which	has	proven	to	be	difficult	to	reproduce	in	a
machine.	As	early	as	1637,	in	his	famous
Discourse	on	Method,	Descartes	anticipated	this
issue:

If	there	were	machines	that	resembled	our
bodies	and	imitated	our	actions	as	much
as	is	morally	possible,	we	would	always
have	two	very	certain	means	for
recognizing	that	they	are	not	genuinely
human.	The	first	is	that	they	would	never
be	able	to	use	speech,	or	other	signs	by
composing	them,	as	we	do	to	express	our
thoughts	to	others.	For	one	could	easily
conceive	of	a	machine	that	is	made	in
such	a	way	that	it	utters	words	…	but	it
could	not	arrange	words	in	different	ways
to	reply	to	the	meaning	of	everything	that
is	said	in	its	presence,	as	even	the	most



unintelligent	human	beings	can	do.	And
the	second	means	is	that,	even	if	they	did
many	things	as	well	as	or,	possibly,	better
than	anyone	of	us,	they	would	infallibly	fail
in	others.	One	would	thus	discover	that
they	did	not	act	on	the	basis	of
knowledge,	but	merely	as	a	result	of	the
disposition	of	their	organs.	For	whereas
reason	is	a	universal	instrument	that	can
be	used	in	all	kinds	of	situations,	these
organs	need	a	specific	disposition	for
every	particular	action.

Reason,	the	mind’s	universal	instrument	….
The	mental	abilities	that	Descartes	lists	point	to	a
second	learning	system,	hierarchically	higher
than	the	previous	one,	based	on	rules	and
symbols.	In	its	early	stages,	our	visual	system
vaguely	resembles	current	artificial	neural
networks:	it	learns	to	filter	incoming	images	and
to	recognize	frequent	configurations.	This
suffices	to	recognize	a	face,	a	word,	or	a
configuration	of	the	game	Go.	But	then	the
processing	style	radically	changes:	learning
begins	to	resemble	reasoning,	a	logical	inference
that	attempts	to	capture	the	rules	of	a	domain.
Creating	machines	that	reach	this	second	level	of



intelligence	is	a	great	challenge	for
contemporary	artificial	intelligence	research.
Let’s	examine	two	elements	that	define	what
humans	do	when	they	learn	at	this	second	level,
and	that	defy	most	current	machine	learning
algorithms.

LEARNING	IS	INFERRING	THE	GRAMMAR	OF	A	DOMAIN

Characteristic	of	the	human	species	is	a	relentless
search	for	abstract	rules,	high-level	conclusions	that	are
extracted	from	a	specific	situation	and	subsequently
tested	on	new	observations.	Attempting	to	formulate
such	abstract	laws	can	be	an	extraordinarily	powerful
learning	strategy,	since	the	most	abstract	laws	are
precisely	those	that	apply	to	the	greatest	number	of
observations.	Finding	the	appropriate	law	or	logical	rule
that	accounts	for	all	available	data	is	the	ultimate	means
to	massively	accelerate	learning—and	the	human	brain
is	exceedingly	good	at	this	game.
Let	us	consider	an	example.	Imagine	that	I	show	you

a	dozen	opaque	boxes	filled	with	balls	of	different
colors.	I	select	a	box	at	random,	one	from	which	I	have
never	drawn	anything	out	before.	I	plunge	my	hand	into
it,	and	I	draw	a	green	ball.	Can	you	deduce	anything
about	the	contents	of	the	box?	What	color	will	the	next
ball	be?



The	first	answer	that	probably	comes	to	mind	is:	I
have	no	idea—you	gave	me	practically	no	information;
how	could	I	know	the	color	of	the	next	ball?	Yes,	but	…
imagine	that,	in	the	past,	I	drew	some	balls	from	the
other	boxes	and	you	noticed	the	following	rule:	in	a
given	box,	all	balls	are	always	the	same	color.	The
problem	becomes	trivial.	When	I	show	you	a	new	box,
you	need	only	to	draw	a	single	green	ball	to	deduce
that	all	the	other	balls	will	be	this	color.	With	this
general	rule	in	mind,	it	becomes	possible	to	learn	in	a
single	trial.
This	example	illustrates	how	higher-order	knowledge,

formulated	at	what	is	often	called	the	“meta”	level,	can
guide	a	whole	set	of	lower-level	observations.	The
abstract	meta-rule	that	“in	a	given	box,	all	the	balls	are
the	same	color,”	once	learned,	massively	accelerates
learning.	Of	course,	it	may	also	turn	out	to	be	false.	You
will	then	be	massively	surprised	(or	should	I	say	“meta-
surprised”)	if	the	tenth	box	you	explore	contains	balls	of
all	colors.	In	this	case,	you	would	have	to	revise	your
mental	model	and	question	the	assumption	that	all
boxes	are	similar.	Perhaps	you	would	propose	an	even
higher-level	hypothesis,	a	meta-meta-hypothesis—for
instance,	you	may	suppose	that	boxes	come	in	two
kinds,	single-colored	and	multicolored,	in	which	case
you	would	need	at	least	two	draws	per	box	before
concluding	anything.	In	any	case,	formulating	a



hierarchy	of	abstract	rules	would	save	you	valuable
learning	time.
Learning,	in	this	sense,	therefore	means	managing	an

internal	hierarchy	of	rules	and	trying	to	infer,	as	soon	as
possible,	the	most	general	ones	that	summarize	a
whole	series	of	observations.	The	human	brain	seems	to
apply	this	hierarchical	principle	from	childhood.	Take	a
two-	or	three-year-old	child	walking	in	a	garden	and
learning	a	new	word	from	his	or	her	parents,	say,
butterfly.	Often,	it	is	enough	for	the	child	to	hear	the
word	once	or	twice,	and	voilà:	its	meaning	is
memorized.	Such	a	learning	speed	is	amazing.	It
surpasses	every	known	artificial	intelligence	system	to
date.	Why	is	the	problem	difficult?	Because	every
utterance	of	every	word	does	not	fully	constrain	its
meaning.	The	word	butterfly	is	typically	uttered	as	the
child	is	immersed	in	a	complex	scene,	full	of	flowers,
trees,	toys,	and	people;	all	of	these	are	potential
candidates	for	the	meaning	of	that	word—not	to
mention	the	less	obvious	meanings:	every	moment	we
live	is	full	of	sounds,	smells,	movements,	actions,	but
also	abstract	properties.	For	all	we	know,	butterfly
could	mean	color,	sky,	move,	or	symmetry.	The
existence	of	abstract	words	makes	this	problem	most
perplexing.	How	do	children	learn	the	meanings	of	the
words	think,	believe,	no,	freedom,	and	death,	if	the
referents	cannot	be	perceived	or	experienced?	How	do



they	understand	what	“I”	means,	when	each	time	they
hear	it,	the	speakers	are	talking	about	…	themselves?!
The	fast	learning	of	abstract	words	is	as	incompatible

with	naive	views	of	word	learning	as	Pavlovian
conditioning	or	Skinnerian	association.	Neural	networks
that	simply	try	to	correlate	inputs	with	outputs	and
images	with	words,	typically	require	thousands	of	trials
before	they	begin	to	understand	that	the	word	butterfly
refers	to	that	colored	insect,	there,	in	the	corner	of	the
image	…	and	such	a	shallow	correlation	of	words	with
pictures	will	never	discover	the	meanings	of	words
without	a	fixed	reference,	such	as	we,	always,	or	smell.
Word	acquisition	poses	a	huge	challenge	to	cognitive

science.	However,	we	know	that	part	of	the	solution	lies
in	the	child’s	ability	to	formulate	nonlinguistic,	abstract,
logical	representations.	Even	before	they	acquire	their
first	words,	children	possess	a	kind	of	language	of
thought	within	which	they	can	formulate	and	test
abstract	hypotheses.	Their	brains	are	not	blank	slates,
and	the	innate	knowledge	that	they	project	onto	the
external	world	can	drastically	restrict	the	abstract	space
within	which	they	learn.	Furthermore,	children	quickly
learn	the	meaning	of	words	because	they	select	among
hypotheses	using	as	a	guide	a	whole	panoply	of	high-
level	rules.	Such	meta-rules	massively	accelerate
learning,	exactly	as	in	the	problem	of	the	colored	balls
in	the	different	boxes.



One	of	these	rules	that	facilitates	vocabulary
acquisition	is	to	always	favor	the	simplest,	smallest
assumption	compatible	with	the	data.	For	instance,
when	a	baby	hears	its	mother	say,	“Look	at	the	dog,”	in
theory,	nothing	precludes	the	word	dog	from	referring
to	that	particular	dog	(Snoopy)—or,	conversely,	any
mammal,	four-legged	creature,	animal,	or	living	being.
How	do	children	discover	the	true	meaning	of	a	word—
that	dog	means	all	dogs,	but	only	dogs?	Experiments
suggest	that	they	reason	logically	by	testing	all
hypotheses	but	keeping	only	the	simplest	one	that	fits
with	what	they	heard.	Thus,	when	children	hear	the
word	Snoopy,	they	always	hear	it	in	the	context	of	that
specific	pet,	and	the	smallest	set	compatible	with	those
observables	is	confined	to	that	particular	dog.	And	the
first	time	children	hear	the	word	dog,	in	a	single	specific
context,	they	may	temporarily	believe	that	the	word
refers	to	only	that	particular	animal—but	as	soon	as
they	hear	it	twice,	in	two	different	contexts,	they	can
infer	that	the	word	refers	to	a	whole	category.	A
mathematical	model	of	this	process	predicts	that	three
or	four	instances	are	enough	to	converge	toward	the
appropriate	meaning.13 	This	is	the	inference	that
children	make,	faster	than	any	current	artificial	neural
network.
Other	tricks	allow	children	to	learn	language	in	record

time,	compared	with	present-day	AI	systems.	One	of



these	meta-rules	expresses	a	truism:	in	general,	the
speaker	pays	attention	to	what	he	or	she	is	talking
about.	Once	babies	understand	this	rule,	they	can
considerably	restrict	the	abstract	space	in	which	they
search	for	meaning:	they	do	not	have	to	correlate	every
word	with	all	the	objects	present	in	the	visual	scene,	as
a	computer	would,	until	they	obtain	enough	data	to
prove	that	each	time	they	hear	about	a	butterfly,	the
little	colored	insect	is	present.	All	the	child	has	to	do	to
infer	what	his	mother	is	talking	about	is	follow	her	gaze
or	the	direction	of	her	finger:	this	is	called	“shared
attention,”	and	it	is	a	fundamental	principle	of	language
learning.
Here	is	an	elegant	experiment:	Take	a	two-	or	three-

year-old	child,	show	him	a	new	toy,	and	have	an	adult
look	at	it	while	saying,	“Oh,	a	wog!”	A	single	trial
suffices	for	the	child	to	figure	out	that	wog	is	the	name
of	that	object.	Now	replicate	the	situation,	except	that
the	adult	doesn’t	say	a	word,	but	the	child	hears	“Oh,	a
wog!”	uttered	by	a	loudspeaker	on	the	ceiling.	The
child	learns	strictly	nothing,	because	he	can	no	longer
decipher	the	speaker’s	intention.14 	Babies	learn	the
meaning	of	a	new	word	only	if	they	manage	to
understand	the	intention	of	the	person	who	uttered	it.
This	ability	also	enables	them	to	acquire	a	lexicon	of
abstract	words:	to	do	so,	they	must	put	themselves	in



the	speaker’s	place	to	understand	which	thought	or
word	the	speaker	intended	to	refer	to.
Children	use	many	other	meta-rules	to	learn	words.

For	example,	they	capitalize	on	grammatical	context:
when	they	are	told,	“Look	at	the	butterfly,”	the
presence	of	the	determiner	word	the	makes	it	very
likely	that	the	following	word	is	a	noun.	This	is	a	meta-
rule	that	they	had	to	learn—babies	obviously	are	not
born	with	an	innate	knowledge	of	all	possible	articles	in
every	language.	However,	research	shows	that	this	type
of	learning	is	fast:	by	twelve	months,	children	have
already	recorded	the	most	frequent	determiners	and
other	function	words	and	use	them	to	guide
subsequent	learning.15

They	are	able	to	do	this	because	these	grammatical
words	are	very	frequent	and,	whenever	they	appear,
almost	invariably	precede	a	noun	or	a	noun	phrase.	The
reasoning	may	seem	circular,	but	it	is	not:	babies	start
learning	their	first	nouns,	beginning	with	extremely
familiar	ones	like	bottle	and	chair,	around	six	months	of
age	…	then	they	notice	that	these	words	are	often
preceded	by	a	very	frequent	word,	the	article	the	…
from	which	they	deduce	that	all	these	words	probably
belong	to	the	same	category,	noun	…	and	that	these
words	often	refer	to	things	…	a	meta-rule	which
enables	them,	when	they	hear	a	new	utterance,	such	as
“the	butterfly,”	to	first	search	for	a	possible	meaning



among	the	objects	around	them,	rather	than	treating
the	word	as	a	verb	or	an	adjective.	Thus,	each	learning
episode	reinforces	this	rule,	which	itself	facilitates
subsequent	learning,	in	a	vast	movement	that
accelerates	every	day.	Developmental	psychologists	say
that	the	child	relies	on	syntactic	bootstrapping:	a
children’s	language-learning	algorithm	manages	to	take
off	gradually,	on	its	own,	by	capitalizing	on	a	series	of
small	but	systematic	inference	steps.



Learning	means	trying	to	select	the	simplest	model	that	fits	the
data.	Suppose	I	show	you	the	top	card	and	tell	you	that	the	three
objects	surrounded	by	thick	lines	are	“tufas.”	With	so	little	data,
how	do	you	find	the	other	tufas?	Your	brain	makes	a	model	of
how	these	forms	were	generated,	a	hierarchical	tree	of	their
properties,	and	then	selects	the	smallest	branch	of	the	tree	which
is	compatible	with	all	the	data.

There	is	yet	another	meta-rule	that	children	use	to
speed	up	word	learning.	It	is	called	the	“mutual
exclusivity	assumption”	and	can	be	stated	succinctly:
one	name	for	each	thing.	The	law	basically	says	that	it	is
unlikely	for	two	different	words	to	refer	to	the	same
concept.	A	new	word	therefore	most	probably	refers	to
a	new	object	or	idea.	With	this	rule	in	mind,	as	soon	as
children	hear	an	unfamiliar	word,	they	can	restrict	their
search	for	meaning	to	things	whose	names	they	do	not
yet	know.	And,	as	of	sixteen	months	of	age,	children
use	this	trick	quite	astutely.16 	Try	the	following
experiment:	take	two	bowls,	a	blue	one	and	another	of
an	unusual	color—say,	olive	green—and	tell	the	child,
“Give	me	the	tawdy	bowl.”	The	child	will	give	you	the



bowl	that	is	not	blue	(a	word	he	already	knows)—he
seems	to	assume	that	if	you	had	wanted	to	speak	about
the	blue	bowl,	you	would	have	used	the	word	blue;
ergo,	you	must	be	referring	to	the	other,	unknown	one.
Weeks	later,	that	single	experience	will	suffice	for	him
to	remember	that	this	odd	color	is	“tawdy.”
Here	again,	we	see	how	the	mastery	of	a	meta-rule

can	massively	accelerate	learning.	And	it	is	likely	that
this	meta-rule	itself	was	learned.	Indeed,	some
experiments	indicate	that	children	from	bilingual
families	apply	this	rule	much	less	than	monolingual
babies.17 	Their	bilingual	experience	makes	them
realize	that	their	parents	can	use	different	words	to	say
the	same	thing.	Monolingual	children,	on	the	other
hand,	heavily	rely	on	the	exclusivity	rule.	They	have
figured	out	that	whenever	you	use	a	new	word,	it	is
likely	that	you	wanted	them	to	learn	a	novel	object	or
concept.	If	you	say,	“Give	me	the	glax”	in	a	room	full	of
familiar	objects,	they	will	search	everywhere	for	this
mysterious	object	to	which	you	are	referring—and
won’t	imagine	that	you	could	be	referring	to	one	of	the
known	ones.
All	these	meta-rules	illustrate	what	is	called	the

“blessing	of	abstraction”:	the	most	abstract	meta-rules
can	be	the	easiest	things	to	learn,	because	every	word
that	the	child	hears	provides	evidence	for	them.	Thus,
the	grammatical	rule	“nouns	tend	to	be	preceded	by



the	article	the”	may	well	be	acquired	early	on	and
guide	the	subsequent	acquisition	of	a	vast	repertoire	of
nouns.	Thanks	to	the	blessing	of	abstraction,	around
two	to	three	years	of	age,	children	enter	a	blessed
period	rightfully	called	the	“lexical	explosion,”	during
which	they	effortlessly	learn	between	ten	and	twenty
new	words	a	day,	solely	based	on	tenuous	clues	that
still	stall	the	best	algorithms	on	the	planet.
The	ability	to	use	meta-rules	seems	to	require	a	good

dose	of	intelligence.	Does	that	make	it	unique	to	the
human	species?	Not	entirely.	To	some	degree,	other
animals	are	also	capable	of	abstract	inference.	Take	the
case	of	Rico,	a	shepherd	dog	who	was	trained	to	fetch	a
diverse	range	of	objects.18 	All	you	have	to	do	is	say:
“Rico,	go	fetch	the	dinosaur”	…	and	the	animal	goes
into	the	game	room	and	comes	back	a	few	seconds
later	with	a	stuffed	dinosaur	in	his	mouth.	The
ethologists	who	tested	him	showed	that	Rico	knows
about	two	hundred	words.	But	the	most	extraordinary
thing	is	that	he	too	uses	the	mutual	exclusivity	principle
to	learn	new	words.	If	you	tell	him,	“Rico,	go	fetch	the
sikirid”	(a	new	word),	he	always	returns	with	a	new
object,	one	whose	name	he	does	not	yet	know.	He	too
uses	meta-rules	such	as	“one	name	for	each	thing.”
Mathematicians	and	computer	scientists	have	begun

to	design	algorithms	that	allow	machines	to	learn	such
a	hierarchy	of	rules,	meta-rules,	and	meta-meta-rules,



up	to	an	arbitrary	level.	In	these	hierarchical	learning
algorithms,	each	learning	episode	constrains	not	only
the	low-level	parameters,	but	also	the	knowledge	of	the
highest	level,	the	abstract	hyperparameters	which,	in
turn,	will	bias	subsequent	learning.	While	they	do	not
yet	imitate	the	extraordinary	efficiency	of	language
learning,	these	systems	do	achieve	remarkable
performance.	For	example,	figure	4	in	the	color	insert
shows	how	a	recent	algorithm	behaves	as	a	kind	of
artificial	scientist	who	finds	the	best	model	of	the
outside	world.19 	This	system	possesses	a	set	of
abstract	primitives,	as	well	as	a	grammar	that	allows	it
to	generate	an	infinity	of	higher-level	structures	through
the	recombination	of	these	elementary	rules.	It	can,	for
instance,	define	a	linear	chain	as	a	set	of	closely
connected	points	which	is	characterized	by	the	rule
“each	point	has	two	neighbors,	one	to	the	left,	one	to
the	right”—and	the	system	manages	to	discover,	all	by
itself,	that	such	a	chain	is	the	best	way	to	represent	the
set	of	integers	(a	line	that	goes	from	zero	to	infinity)	or
politicians	(from	the	ultraleft	to	the	far	right).	A	variant
of	the	same	grammar	produces	a	binary	tree	where
each	node	has	one	parent	and	two	children.	Such	a	tree
structure	is	automatically	selected	when	the	system	is
asked	to	represent	living	beings—the	machine,	like	an
artificial	Darwin,	spontaneously	rediscovers	the	tree	of
life!



Other	combinations	of	rules	generate	planes,
cylinders,	and	spheres,	and	the	algorithm	figures	out
how	such	structures	approximate	the	geography	of	our
planet.	More	sophisticated	versions	of	the	same
algorithm	manage	to	express	even	more	abstract	ideas.
For	example,	American	computer	scientists	Noah
Goodman	and	Josh	Tenenbaum	designed	a	system
capable	of	discovering	the	principle	of	causality20 —the
very	idea	that	some	events	cause	others.	Its	formulation
is	abstruse	and	mathematical:	“In	a	directed,	acyclic
graph	linking	various	variables,	there	exists	a	subset	of
variables	on	which	all	others	depend.”	Although	this
expression	is	almost	incomprehensible,	I	cite	it	because
it	nicely	illustrates	the	kind	of	abstract	internal	formulas
that	this	mental	grammar	is	capable	of	expressing	and
testing.	The	system	puts	thousands	of	such	formulas	to
the	test	and	keeps	only	those	that	fit	with	the	incoming
data.	As	a	result,	it	quickly	infers	the	principle	of
causality	(if,	indeed,	some	of	the	sensory	experiences	it
receives	are	causes	and	others	are	consequences).	This
is	yet	another	illustration	of	the	blessing	of	abstraction:
entertaining	such	a	high-level	hypothesis	massively
accelerates	learning,	because	it	dramatically	narrows
the	space	of	plausible	hypotheses	within	which	to
search.	And	thanks	to	it,	generations	of	children	are	on
the	lookout	for	explanations,	constantly	asking	“Why?”



and	searching	for	causes—thus	fueling	our	species’s
endless	pursuit	of	scientific	knowledge.
According	to	this	view,	learning	consists	of	selecting,

from	a	large	set	of	expressions	in	the	language	of
thought,	the	one	that	best	fits	the	data.	We	will	soon
see	that	this	is	an	excellent	model	of	what	children	do.
Like	budding	scientists,	they	formulate	theories	and
compare	them	with	the	outside	world.	This	implies	that
children’s	mental	representations	are	much	more
structured	than	those	of	present-day	artificial	neural
networks.	From	birth,	the	child’s	brain	must	already
possess	two	key	ingredients:	all	the	machinery	that
makes	it	possible	to	generate	a	plethora	of	abstract
formulas	(a	combinatorial	language	of	thought)	and	the
ability	to	choose	from	these	formulas	wisely,	according
to	their	plausibility	given	the	data.
Such	is	the	new	vision	of	the	brain:21 	an	immense

generative	model,	massively	structured	and	capable	of
producing	myriad	hypothetical	rules	and	structures—
but	which	gradually	restricts	itself	to	those	that	fit	with
reality.

LEARNING	IS	REASONING	AS	A	SCIENTIST

How	does	the	brain	select	the	best-fitting	hypothesis?
On	what	criteria	should	it	accept	or	reject	a	model	of
the	outside	world?	It	turns	out	that	there	is	an	ideal
strategy	for	doing	so.	This	strategy	lies	at	the	very	core



of	one	of	the	most	recent	and	productive	theories	of
learning:	the	hypothesis	that	the	brain	behaves	like	a
budding	scientist.	According	to	this	theory,	learning	is
reasoning	like	a	good	statistician	who	chooses,	among
several	alternative	theories,	that	which	has	the	greatest
probability	of	being	correct,	because	it	best	accounts
for	the	available	data.
How	does	scientific	reasoning	work?	When	scientists

formulate	a	theory,	they	do	not	just	write	down
mathematical	formulas—they	make	predictions.	The
strength	of	a	theory	is	judged	by	the	richness	of	the
original	predictions	that	emerged	from	it.	The
subsequent	confirmation	or	rebuttal	of	those
predictions	is	what	leads	to	a	theory’s	validation	or
downfall.	Researchers	apply	a	simple	logic:	they	state
several	theories,	unravel	the	web	of	ensuing
predictions,	and	eliminate	the	theories	whose
predictions	are	invalidated	by	experiments	and
observations.	Of	course,	a	single	experiment	rarely
suffices:	it	is	often	necessary	to	replicate	the	experiment
several	times,	in	different	labs,	in	order	to	disentangle
what	is	true	from	what	is	false.	To	paraphrase
philosopher	of	science	Karl	Popper	(1902–94),
ignorance	continuously	recedes	as	a	series	of
conjectures	and	refutations	permit	the	progressive
refinement	of	a	theory.



The	slow	process	of	science	resembles	the	way	we
learn.	In	each	of	our	minds,	ignorance	is	gradually
erased	as	our	brain	successfully	formulates	increasingly
accurate	theories	of	the	outside	world	through
observations.	But	is	this	nothing	more	than	a	vague
metaphor?	No—it	is,	in	fact,	a	rather	precise	statement
about	what	the	brain	must	be	computing.	And	over	the
last	thirty	years,	the	hypothesis	of	“the	child	as	a
scientist”	has	led	to	a	series	of	major	discoveries	about
how	children	reason	and	learn.
Mathematicians	and	computer	scientists	have	long

theorized	the	best	way	of	reasoning	in	the	presence	of
uncertainties.	This	sophisticated	theory	is	called
“Bayesian,”	after	its	discoverer,	the	Reverend	Thomas
Bayes	(1702–61),	an	English	Presbyterian	pastor	and
mathematician	who	became	a	member	of	the	Royal
Society.	But	perhaps	we	should	be	calling	it	the
Laplacian	theory,	since	it	was	the	great	French
mathematician	Pierre-Simon,	Marquis	de	Laplace
(1749–1827),	who	gave	it	its	first	complete
formalization.	In	spite	of	its	ancient	roots,	it	is	only	in
the	last	twenty	years	or	so	that	this	view	has	gained
prominence	in	cognitive	science	and	machine	learning.
An	increasing	number	of	researchers	have	begun	to
realize	that	only	the	Bayesian	approach,	firmly
grounded	in	probability	theory,	guarantees	the
extraction	of	a	maximum	of	information	from	each	data



point.	To	learn	is	to	be	able	to	draw	as	many	inferences
as	possible	from	each	observation,	even	the	most
uncertain	ones—and	this	is	precisely	what	Bayes’s	rule
guarantees.
What	did	Bayes	and	Laplace	discover?	Simply	put:

the	right	way	to	make	inferences,	by	reasoning	with
probabilities	in	order	to	trace	every	observation,
however	tenuous,	back	to	its	most	plausible	cause.	Let’s
return	to	the	foundations	of	logic.	Since	ancient	times,
humanity	has	understood	how	to	reason	with	values	of
truth,	true	or	false.	Aristotle	introduced	the	rules	of
deduction	that	we	call	syllogisms,	which	we	all	apply
more	or	less	intuitively.	For	example,	the	rule	called
“modus	tollens”	(literally	translated	as	“method	of
denying”)	says	that	if	P	implies	Q	and	it	turns	out	that	Q
is	false,	then	P	must	be	false.	It	is	this	rule	that	Sherlock
Holmes	applied	in	the	famous	story	“Silver	Blaze”:

“Is	there	any	other	point	to	which	you	would
wish	to	draw	my	attention?”	asks	Inspector
Gregory	of	Scotland	Yard.

Holmes:	“To	the	curious	incident	of	the	dog	in
the	night-time.”

Gregory:	“The	dog	did	nothing	in	the	night-
time.”



Holmes:	“That	was	the	curious	incident.”

Sherlock	reasoned	that	if	the	dog	had	spotted	a
stranger,	then	he	would	have	barked.	Because	he	did
not,	the	criminal	must	have	been	a	familiar	person	…
reasoning	that	allows	the	famous	detective	to	narrow
down	his	search	and	eventually	unmask	the	culprit.
“What	does	this	have	to	do	with	learning?”	you	may

be	asking	yourself.	Well,	learning	is	also	reasoning	like	a
detective:	it	always	boils	down	to	going	back	to	the
hidden	causes	of	phenomena,	in	order	to	deduce	the
most	plausible	model	that	governs	them.	But	in	the	real
world,	observations	are	rarely	true	or	false:	they	are
uncertain	and	probabilistic.	And	that	is	exactly	where
the	fundamental	contributions	of	the	Reverend	Bayes
and	the	Marquis	de	Laplace	come	into	play:	Bayesian
theory	tells	us	how	to	reason	with	probabilities,	what
kinds	of	syllogisms	we	must	apply	when	the	data	are
not	perfect,	true	or	false,	but	probabilistic.
Probability	Theory:	The	Logic	of	Science	is	the	title	of

a	fascinating	book	on	Bayesian	theory	by	statistician	E.
T.	Jaynes	(1922–98).22 	In	it,	he	shows	that	what	we	call
probability	is	nothing	more	than	the	expression	of	our
uncertainty.	The	theory	expresses,	with	mathematical
precision,	the	laws	according	to	which	uncertainty	must
evolve	when	we	make	a	new	observation.	It	is	the



perfect	extension	of	logic	to	the	foggy	domain	of
probabilities	and	uncertainties.
Let’s	take	an	example,	similar	in	spirit	to	the	one	on

which	the	Reverend	Bayes	founded	his	theory	in	the
eighteenth	century.	Suppose	I	see	someone	flip	a	coin.
If	the	coin	is	fair,	it	is	equally	likely	to	land	on	heads	as	it
is	tails:	fifty-fifty.	From	this	premise,	classical	probability
theory	tells	us	how	to	compute	the	chances	of
observing	certain	outcomes	(for	example,	the
probability	of	getting	five	tails	in	a	row).	Bayesian
theory	allows	us	to	travel	in	the	opposite	direction,	from
observations	to	causes.	It	tells	us,	in	a	mathematically
precise	manner,	how	to	answer	such	questions	as	“After
several	coin	flips,	should	I	change	my	views	on	the
coin?”	The	default	assumption	is	that	the	coin	is
unbiased	…	but	if	I	see	it	land	on	tails	twenty	times,	I
have	to	revise	my	assumptions:	the	coin	is	most
certainly	rigged.	Obviously,	my	original	hypothesis	has
become	improbable,	but	by	how	much?	The	theory
precisely	explains	how	to	update	our	beliefs	after	each
observation.	Each	assumption	is	assigned	a	number
that	corresponds	to	a	plausibility	or	confidence	level.
With	each	observation,	this	number	changes	by	a	value
that	depends	on	the	degree	of	improbability	of	the
observed	outcome.	Just	as	in	science,	the	more
improbable	an	experimental	observation	is,	the	more	it
violates	the	predictions	of	our	initial	theory,	and	the



more	confidently	we	can	reject	that	theory	and	look	for
alternative	interpretations.
Bayesian	theory	is	remarkably	effective.	During	the

Second	World	War,	British	mathematician	Alan	Turing
(1912–54)	used	it	to	decrypt	the	Enigma	code.	At	the
time,	German	military	messages	were	encrypted	by	the
Enigma	machine,	a	complex	contraption	of	gears,
rotors,	and	electrical	cables,	assembled	to	produce
over	a	billion	different	configurations	that	changed	after
each	letter.	Every	morning,	the	cryptographer	would
place	the	machine	in	the	specific	configuration	that	was
planned	for	that	day.	He	would	then	type	a	text,	and
Enigma	would	spit	out	a	seemingly	random	sequence
of	letters,	which	only	the	owner	of	the	encryption	key
could	decode.	To	anyone	else,	the	text	seemed	totally
devoid	of	any	order.	But	herein	lies	Turing’s	genius:	he
discovered	that	if	two	machines	had	been	initialized	in
the	same	way,	it	introduced	a	slight	bias	in	the
distribution	of	letters,	so	that	the	two	messages	were
slightly	more	likely	to	resemble	each	other.	This	bias
was	so	small	that	no	single	letter	was	enough	to
conclude	anything	for	certain.	By	accumulating	those
improbabilities,	however,	letter	after	letter,	Turing
could	progressively	gather	more	and	more	evidence
that	the	same	configuration	had	indeed	been	used
twice.	On	this	basis,	and	with	the	help	of	what	they
whimsically	called	“the	bomb”	(a	large,	ticking



electromechanical	machine	that	prefigured	our
computers),	he	and	his	team	regularly	broke	the
Enigma	code.
Again,	what’s	the	relevance	to	our	brains?	Well,	the

very	same	type	of	reasoning	seems	to	occur	inside	our
cortex.23 	According	to	this	theory,	each	region	of	the
brain	formulates	one	or	more	hypotheses	and	sends	the
corresponding	predictions	to	other	regions.	In	this	way,
each	brain	module	constrains	the	assumptions	of	the
next	one,	by	exchanging	messages	that	convey
probabilistic	predictions	about	the	outside	world.	These
signals	are	called	“top-down”	because	they	start	in
high-level	cerebral	areas,	such	as	the	frontal	cortex,	and
make	their	way	down	to	the	lower	sensory	areas,	such
as	the	primary	visual	cortex.	The	theory	proposes	that
these	signals	express	the	realm	of	hypotheses	that	our
brain	considers	plausible	and	wishes	to	test.
In	sensory	areas,	these	top-down	assumptions	come

into	contact	with	“bottom-up”	messages	from	the
outside	world,	for	instance,	from	the	retina.	At	this
moment,	the	model	is	confronted	with	reality.	The
theory	says	that	the	brain	should	calculate	an	error
signal:	the	difference	between	what	the	model
predicted	and	what	has	been	observed.	The	Bayesian
algorithm	then	indicates	how	to	use	this	error	signal	to
modify	the	internal	model	of	the	world.	If	there	is	no
mistake,	it	means	that	the	model	was	right.	Otherwise,



the	error	signal	moves	up	the	chain	of	brain	areas	and
adjusts	the	model	parameters	along	the	way.	Relatively
quickly,	the	algorithm	converges	toward	a	mental
model	that	fits	the	outside	world.
According	to	this	vision	of	the	brain,	our	adult

judgments	combine	two	levels	of	insights:	the	innate
knowledge	of	our	species	(what	Bayesians	call	priors,
the	sets	of	plausible	hypotheses	inherited	throughout
evolution)	and	our	personal	experience	(the	posterior:
the	revision	of	those	hypotheses,	based	on	all	the
inferences	we	have	been	able	to	gather	throughout	our
life).	This	division	of	labor	puts	the	classic	“nature
versus	nurture”	debate	to	rest:	our	brain	organization
provides	us	with	both	a	powerful	start-up	kit	and	an
equally	powerful	learning	machine.	All	knowledge	must
be	based	on	these	two	components:	first,	a	set	of	a
priori	assumptions,	prior	to	any	interaction	with	the
environment,	and	second,	the	capacity	to	sort	them	out
according	to	their	a	posteriori	plausibility,	once	we	have
encountered	some	real	data.
One	can	mathematically	demonstrate	that	the

Bayesian	approach	is	the	best	way	to	learn.	This	is	the
only	way	to	extract	the	very	essence	of	a	learning
episode	and	get	the	most	out	of	it.	Even	a	few	bits	of
information,	such	as	the	suspicious	coincidences	that
Turing	spotted	in	the	Enigma	code,	may	suffice	to
learn.	Once	the	system	processes	them,	like	a	good



statistician	patiently	accumulating	evidence,	it	will
inevitably	end	up	with	enough	data	to	refute	certain
theories	and	validate	others.
Is	this	really	how	the	brain	works?	Is	it	capable	of

generating,	at	birth,	vast	realms	of	hypotheses	that	it
learns	to	pick	from?	Does	it	proceed	by	elimination,
selecting	hypotheses	according	to	how	well	the
observed	data	support	them?	Do	babies,	right	from
birth,	act	as	clever	statisticians?	Are	they	able	to	extract
as	much	information	as	possible	from	each	learning
experience?	Let’s	now	take	a	closer	look	at	the
experimental	data	on	babies’	brains.







The	debate	of	nature	versus	nurture	has	raged	for
millennia.	Are	babies	comparable	to	a	white	page,	a
blank	slate,	or	an	empty	bottle	that	experience	must
fill?	As	early	as	400	BCE,	in	The	Republic,	Plato	was
already	rejecting	the	idea	that	our	brains	enter	the
world	devoid	of	any	knowledge.	From	birth,	he
claimed,	every	soul	possesses	two	sophisticated
mechanisms:	the	power	of	knowledge	and	the	organ	by
which	we	acquire	instruction.
As	we	have	just	seen,	two	thousand	years	later,	a

remarkably	similar	conclusion	arose	from	advances	in
machine	learning.	Learning	is	vastly	more	effective
when	the	machine	comes	equipped	with	two	features:	a
vast	space	of	hypotheses,	a	set	of	mental	models	with
myriad	settings	to	choose	from;	and	sophisticated
algorithms	that	adjust	those	settings	according	to	the
data	received	from	the	outside	world.	As	one	of	my
friends	once	said,	in	the	debate	on	nature	versus
nurture,	we	have	underestimated	both!	Learning
requires	two	structures:	an	immense	set	of	potential
models	and	an	efficient	algorithm	to	adjust	them	to
reality.
Artificial	neural	networks	do	this	in	their	own	way,	by

entrusting	the	representation	of	mental	models	to
millions	of	adjustable	connections.	However,	these
systems,	while	capturing	the	rapid	and	unconscious
recognition	of	images	or	speech,	are	not	yet	able	to



represent	more	abstract	hypotheses,	such	as	grammar
rules	or	the	logic	of	mathematical	operations.
The	human	brain	seems	to	function	in	a	different	way:

our	knowledge	grows	through	the	combination	of
symbols.	According	to	this	view,	we	come	into	the
world	with	a	vast	number	of	possible	combinations	of
potential	thoughts.	This	language	of	thought,	endowed
with	abstract	assumptions	and	grammar	rules,	is	already
in	place	prior	to	learning.	It	generates	a	vast	realm	of
hypotheses	to	be	put	to	the	test.	And	to	do	so,
according	to	the	Bayesian	brain	theory,	our	brain	must
act	like	a	scientist,	collecting	statistical	data	and	using
them	to	select	the	best-fitting	generative	model.
This	view	of	learning	may	seem	counterintuitive.	It

suggests	that	each	human	baby’s	brain	potentially
contains	all	the	languages	of	the	world,	all	the	objects,
all	the	faces,	and	all	the	tools	that	it	will	ever	encounter,
in	addition	to	all	the	words,	all	the	facts,	and	all	the
events	that	it	will	ever	remember.	The	combinatorics	of
the	brain	are	such	that	all	these	objects	of	thought	are
potentially	already	there,	along	with	their	respective	a
priori	probabilities,	as	well	as	the	ability	to	update	them
when	experience	says	that	they	need	to	be	revised.	Is
this	how	a	baby	learns?







CHAPTER	3

Babies’	Invisible	Knowledge

ON	THE	SURFACE,	WHAT	COULD	BE	MORE	DESTITUTE	OF
KNOWLEDGE	than	a	newborn?	What	could	be	more
reasonable	than	to	think,	as	Locke	did,	that	the	infant’s
mind	is	a	“blank	slate”	simply	waiting	for	the
environment	to	fill	its	empty	pages?	Jean-Jacques
Rousseau	(1712–78)	strove	to	drive	this	point	home	in
his	treatise	Emile,	or	On	Education	(1762):	“We	are
born	capable	of	learning,	but	knowing	nothing,
perceiving	nothing.”	Almost	two	centuries	later,	Alan
Turing,	the	father	of	contemporary	computer	science,
took	up	the	hypothesis:	“Presumably	the	child	brain	is
something	like	a	notebook	as	one	buys	it	from	the
stationer’s.	Rather	little	mechanism,	and	lots	of	blank
sheets.”
We	now	know	that	this	view	is	dead	wrong—nothing

could	be	further	from	the	truth.	Appearances	can	be
deceiving:	despite	its	immaturity,	the	nascent	brain
already	possesses	considerable	knowledge	inherited
from	its	long	evolutionary	history.	For	the	most	part,
however,	this	knowledge	remains	invisible,	because	it
does	not	show	in	babies’	primitive	behavior.	It	therefore
took	cognitive	scientists	much	ingenuity	and	significant



methodological	advances	in	order	to	expose	the	vast
repertoire	of	abilities	all	babies	are	born	with.	Objects,
numbers,	probabilities,	faces,	language	…	the	scope	of
babies’	prior	knowledge	is	extensive.

THE	OBJECT	CONCEPT

We	all	have	the	intuition	that	the	world	is	made	of	rigid
objects.	In	reality,	it	is	made	up	of	atoms,	but	at	the
scale	on	which	we	live,	these	atoms	are	often	packed
together	into	coherent	entities	that	move	as	a	single
blob	and	sometimes	collide	without	losing	their
cohesiveness	….	These	large	bundles	of	atoms	are	what
we	call	“objects.”	The	existence	of	objects	is	a
fundamental	property	of	our	environment.	Is	this
something	that	we	need	to	learn?	No.	Millions	of	years
of	evolution	seem	to	have	engraved	this	knowledge
into	the	very	core	of	our	brains.	As	early	as	a	few
months	of	age,	a	baby	already	knows	that	the	world	is
made	up	of	objects	that	move	coherently,	occupy
space,	do	not	vanish	without	reason,	and	cannot	be	in
two	different	places	at	the	same	time.1 	In	a	sense,
babies’	brains	already	know	the	laws	of	physics:	they
expect	the	trajectory	of	an	object	to	be	continuous	in
space	as	in	time,	without	any	sudden	jump	or
disappearance.
How	do	we	know	this?	Because	babies	act	surprised

in	certain	experimental	situations	that	violate	the	laws



of	physics.	In	today’s	cognitive	science	laboratories,
experimenters	have	become	magicians	(see	figure	5	in
the	color	insert).	In	small	theaters	specially	designed	for
babies,	they	play	all	sorts	of	tricks:	on	the	stage,	objects
appear,	disappear,	multiply,	pass	through	walls	….
Hidden	cameras	monitor	the	babies’	gazes,	and	the
results	are	clear-cut:	even	babies	a	few	weeks	old	are
sensitive	to	magic.	They	already	possess	deep	intuitions
of	the	physical	world	and,	like	all	of	us,	are	stunned
when	their	expectations	turn	out	to	be	false.	By
zooming	in	on	the	children’s	eyes—to	determine	where
they	look	and	for	how	long—cognitive	scientists
manage	to	accurately	measure	their	degree	of	surprise
and	infer	what	they	expected	to	see.
Hide	an	object	behind	a	book,	then	suddenly	crush	it

flat,	as	if	the	hidden	object	no	longer	existed	(in	reality,
it	escaped	through	a	trapdoor):	babies	are
flabbergasted!	They	fail	to	understand	that	a	solid
object	can	vanish	into	thin	air.	They	appear
dumbfounded	when	an	object	disappears	behind	one
screen	and	reappears	behind	another,	without	ever
being	seen	in	the	empty	space	between	the	two
screens.	They	are	also	amazed	when	a	small	train	rolling
down	a	slope	seamlessly	passes	through	a	rigid	wall.
And	they	expect	objects	to	form	a	coherent	whole:	if
they	see	two	ends	of	a	stick	moving	coherently	on	both
sides	of	a	screen,	they	expect	them	to	belong	to	a



single	stick	and	are	shocked	when	the	screen	lowers
and	reveals	two	distinct	rods	(see	below).
Babies	therefore	possess	a	vast	knowledge	of	the

world,	but	they	don’t	know	everything	from	the	start,	far
from	it.	It	takes	a	few	months	for	babies	to	understand
how	two	objects	can	support	each	other.2 	At	first,	they
don’t	know	that	an	object	falls	when	you	drop	it.	Only
very	gradually	do	they	become	aware	of	all	the	factors
that	make	an	object	fall	or	stay	put.	First,	they	realize
that	objects	fall	when	they	lose	their	support,	but	they
think	that	any	sort	of	contact	suffices	to	keep	an	object
still—for	example,	when	a	toy	is	placed	at	the	edge	of	a
table.	Progressively,	they	realize	that	the	toy	must	not
only	be	in	contact	with	the	table,	but	on	top	of	it,	not
under	or	against	it.	Finally,	it	takes	them	a	few	more
months	to	figure	out	that	this	rule	is	not	enough:	in	the
end,	it’s	the	center	of	gravity	of	the	object	that	must
remain	above	the	table.



Babies	possess	extremely	early	intuitions	of	arithmetic,
physics,	and	even	psychology.	To	assess	them,
researchers	evaluate	whether	babies	look	at	a
surprising	scene	for	a	longer	time	than	an	unsurprising
one.	When	a	box	contains	a	majority	of	black	balls,
babies	are	surprised	to	see	a	white	one	come	out
(intuition	of	numbers	and	probabilities).	If	two	ends	of
a	stick	move	coherently,	babies	are	dumbfounded
when	two	different	rods	are	revealed	(intuition	of
objects).	And	if	babies	see	a	ball	move	autonomously
and	jump	over	a	wall	before	escaping	to	the	right-
hand	side,	they	deduce	that	the	ball	is	a	living	being



with	an	intention	of	its	own,	and	they	are	amazed	if	it
keeps	jumping	once	the	wall	has	disappeared
(intuition	of	psychology).

Keep	this	in	mind	the	next	time	your	baby	drops	his
or	her	spoon	from	the	table	for	the	tenth	time,	to	your
great	despair:	they	are	only	experimenting!	Like	any
scientist,	children	need	a	whole	series	of	trials	to
successively	reject	all	the	wrong	theories,	in	the
following	order:	(1)	objects	stay	put	in	the	air;	(2)	they
must	touch	another	object	to	not	fall;	(3)	they	must	be
atop	another	object	to	not	fall;	(4)	the	majority	of	their
volume	must	be	above	another	object	to	not	fall,	and
so	on	and	so	forth.
This	experimental	attitude	continues	all	the	way	into

adulthood.	We	are	all	fascinated	with	gadgets	that
seem	to	violate	the	usual	laws	of	physics	(helium
balloons,	mobiles	in	equilibrium,	roly-poly	toys	with	a
displaced	center	of	gravity	…),	and	we	all	enjoy	magic
shows	where	rabbits	disappear	in	a	hat	and	women	are
sawed	in	two.	These	situations	entertain	us	because
they	violate	the	intuitions	that	our	brain	has	held	since
birth	and	refined	in	our	first	year	of	life.	Josh
Tenenbaum,	a	professor	of	artificial	intelligence	and
cognitive	science	at	MIT,	hypothesizes	that	babies’
brains	host	a	game	engine,	a	mental	simulation	of	the
typical	behavior	of	objects	similar	to	the	ones	that	video
games	use	in	order	to	simulate	different	virtual	realities.



By	running	these	simulations	in	their	heads,	and	by
comparing	simulations	with	reality,	babies	discover	very
early	on	what	is	physically	possible	or	probable.

THE	NUMBER	SENSE

Let’s	take	a	second	example:	arithmetic.	What	could	be
more	obvious	than	that	babies	have	no	understanding
of	mathematics?	And	yet,	since	the	1980s,	experiments
have	shown	quite	the	opposite.3 	In	one	experiment,
babies	are	repeatedly	presented	with	slides	showing
two	objects.	After	a	while,	they	get	bored	…	until	they
are	shown	a	picture	with	three	objects:	suddenly,	they
stare	longer	at	this	new	scene,	indicating	that	they
detected	the	change.	By	manipulating	the	nature,	size,
and	density	of	objects,	one	can	prove	that	children	are
genuinely	sensitive	to	the	number	itself,	i.e.,	the
cardinal	of	the	whole	set,	not	another	physical
parameter.	The	best	proof	that	infants	possess	an
abstract	“number	sense”	is	that	they	generalize	from
sounds	to	images:	if	they	hear	tu	tu	tu	tu—that	is,	four
sounds—they	are	more	interested	in	a	picture	that	has	a
matching	number	of	four	objects	in	it	than	in	a	picture
that	has	twelve,	and	vice	versa.4 	Well-controlled
experiments	of	this	sort	abound	and	convincingly	show
that,	at	birth,	babies	already	possess	the	intuitive	ability
to	recognize	an	approximate	number	without	counting,
regardless	of	whether	the	information	is	heard	or	seen.



Can	babies	calculate	too?	Suppose	that	children	see
an	object	hide	behind	a	screen,	followed	by	a	second
one.	The	screen	then	lowers—lo	and	behold,	only	one
object	is	there!	Babies	manifest	their	surprise	in	a
prolonged	investigation	of	the	unexpected	scene.5 	If,
however,	they	see	the	two	expected	objects,	they	look
at	them	for	only	a	brief	moment.	This	behavior	of
“cognitive	surprise,”	in	reaction	to	the	violation	of	a
mental	calculation,	shows	that,	as	early	as	a	few	months
of	age,	children	understand	that	1	+	1	should	make	2.
They	build	an	internal	model	of	the	hidden	scene	and
know	how	to	manipulate	it	by	adding	or	removing
objects.	And	such	experiments	work	not	only	for	1	+	1
and	2	−	1,	but	also	for	5	+	5	and	10	−	5.	Provided	that
the	error	is	big	enough,	nine-month-old	babies	are
surprised	whenever	a	concrete	display	hints	at	a	wrong
calculation:	they	can	tell	that	5	+	5	cannot	be	5,	and
that	10	−	5	cannot	be	10.6

Is	this	really	an	innate	skill?	Could	the	first	months	of
life	suffice	for	a	child	to	learn	the	behavior	of	sets	of
objects?	While	children	undoubtedly	refine	the
accuracy	with	which	they	perceive	numbers7 	over	the
first	months	of	life,	the	data	show,	equally	clearly,	that
the	starting	point	for	children	is	not	a	blank	slate.
Newborns	perceive	numbers	within	a	few	hours	of	life—
and	so	do	monkeys,	pigeons,	ravens,	chicks,	fish,	and
even	salamanders.	And	with	the	chicks,	the



experimenters	controlled	all	the	sensory	inputs,	making
sure	that	the	baby	chicks	did	not	see	even	a	single
object	after	they	hatched	…	yet	the	chicks	recognized
numbers.8

Such	experiments	show	that	arithmetic	is	one	of	the
innate	skills	that	evolution	bestows	unto	us,	as	well	as
many	other	species.	Brain	circuits	for	numbers	have
been	identified	in	monkeys	and	even	in	ravens.	Their
brains	contain	“number	neurons”	that	behave	in	a	very
similar	way:	they	are	attuned	to	specific	numbers	of
objects.	Some	neurons	prefer	to	see	one	object,	others
two,	three,	five,	or	even	thirty	objects—and,	crucially,
these	cells	are	present	even	in	animals	that	have	not
received	any	specific	training.9 	My	lab	has	used	brain-
imaging	techniques	to	show	that,	at	homologous
locations	of	the	human	brain,	our	neuronal	circuits	also
contain	similar	cells	attuned	to	the	cardinal	number	of	a
concrete	set—and	recently,	with	advances	in	recording
techniques,	such	neurons	have	been	directly	recorded
in	the	human	hippocampus.10

Incidentally,	these	results	overturn	several	tenets	of	a
central	theory	of	child	development,	that	of	the	great
Swiss	psychologist	Jean	Piaget	(1896–1980).	Piaget
thought	that	young	infants	were	not	endowed	with
“object	permanence”—the	fact	that	objects	continue	to
exist	when	they	are	no	longer	seen—until	the	end	of
the	first	year	of	life.	He	also	thought	that	the	abstract



concept	of	number	was	beyond	children’s	grasp	for	the
first	few	years	of	life,	and	that	they	slowly	learned	it	by
progressively	abstracting	away	from	the	more	concrete
measures	of	size,	length,	and	density.	In	reality,	the
opposite	is	true.	Concepts	of	objects	and	numbers	are
fundamental	features	of	our	thoughts;	they	are	part	of
the	“core	knowledge”	with	which	we	come	into	the
world,	and	when	combined,	they	enable	us	to	formulate
more	complex	thoughts.11

Number	sense	is	only	one	example	of	what	I	call
infants’	invisible	knowledge:	the	intuitions	that	they
possess	from	birth	and	that	guide	their	subsequent
learning.	Here	are	more	examples	of	the	skills
researchers	have	demonstrated	in	babies	as	young	as	a
few	weeks	old.

THE	INTUITION	OF	PROBABILITIES

Going	from	numbers	to	probabilities	takes	only	one
step	…	a	step	that	researchers	have	recently	taken	by
wondering	if	babies	a	few	months	old	could	predict	the
outcome	of	a	lottery	draw.	In	this	experiment,	babies
are	first	presented	with	a	transparent	box	containing
balls	that	move	around	randomly.	There	are	four	balls:
three	red	and	one	green.	At	the	bottom,	there	is	an
exit.	At	some	point,	the	container	is	occluded,	and	then
either	a	green	ball	or	a	red	ball	comes	out	the	bottom.
Remarkably,	the	child’s	surprise	is	directly	related	to	the



improbability	of	what	she	sees:	if	a	red	ball	comes	out
—the	most	likely	event,	since	the	majority	of	the	balls	in
the	box	are	red—the	baby	looks	at	it	for	only	a	brief
moment	…	whereas	if	the	more	improbable	outcome
occurs,	that	is,	a	green	ball	that	had	only	one	chance	in
four	to	come	out,	the	baby	looks	at	it	for	much	longer.
Subsequent	controls	confirm	that	babies	run,	in	their

little	heads,	a	detailed	mental	simulation	of	the
situation	and	the	associated	probabilities.	Thus,	if	we
introduce	a	partition	that	blocks	the	balls,	or	if	we	move
the	balls	closer	to	or	farther	away	from	the	exit,	or	if	we
vary	the	time	before	the	balls	exit	the	box,	we	find	that
infants	integrate	all	these	parameters	into	their	mental
calculation	of	probability.	The	duration	of	their	gaze
always	reflects	the	improbability	of	the	observed
situation,	which	they	seem	to	compute	based	on	the
number	of	objects	involved.
All	these	skills	surpass	those	of	most	current	artificial

neural	networks.	Indeed,	infants’	surprise	reaction	is	far
from	trivial.	Being	surprised	indicates	that	the	brain	was
able	to	estimate	the	underlying	probabilities	and
concluded	that	the	observed	event	had	but	a	tiny
chance	of	occurring.	Because	babies’	gazes	show
elaborate	signs	of	surprise,	their	brains	must	be	capable
of	probabilistic	calculations.	Indeed,	one	of	the	most
popular	current	theories	of	brain	function	views	the
brain	as	a	probabilistic	computer	that	manipulates



probability	distributions	and	uses	them	to	anticipate
future	events.	Infant	experiments	reveal	that	even
babies	are	equipped	with	such	a	sophisticated
calculator.
A	series	of	recent	studies	further	shows	that	babies

come	equipped	with	all	the	mechanisms	to	make
complex	probabilistic	inferences.	Do	you	remember	the
Reverend	Bayes’s	mathematical	theory	of	probabilities,
which	allows	us	to	trace	an	observation	back	to	its
probable	causes?	Well,	even	babies	a	few	months	old
already	seem	to	reason	according	to	Bayes’s	rule.12

Indeed,	not	only	do	they	know	how	to	go	from	a	box	of
colored	balls	to	the	corresponding	probabilities
(forward	reasoning)	as	we	just	saw,	but	also	from
observations	back	to	the	content	of	the	box	(reverse
inference).	In	one	experiment,	we	first	show	babies	an
opaque	box,	whose	contents	are	hidden.	Then	we	bring
in	a	blindfolded	person,	who	randomly	takes	out	a
series	of	balls.	The	balls	appear	one	after	another,	and
it	turns	out	that	the	majority	are	red.	Can	babies	infer
that	the	box	must	contain	an	abundance	of	red	balls?
Yes!	When	we	eventually	open	the	box	and	show	them
that	it	contains	a	majority	of	green	balls,	they	are
surprised	and	look	longer	than	if	the	box	turns	out	to
be	full	of	red	balls.	Their	logic	is	impeccable:	If	the	box
is	filled	mostly	with	green	balls,	how	do	we	explain	that
the	random	draw	yielded	so	many	red	balls?



Again,	this	behavior	may	not	seem	like	much,	but	it
implies	an	extraordinary	ability	for	implicit,	unconscious
reasoning	that	works	in	both	directions:	given	a	sample,
infants	can	guess	the	characteristics	of	the	set	from
which	it	was	drawn;	and,	vice	versa,	given	a	set,	they
manage	to	guess	how	a	random	sample	should	look.
From	birth	on,	thus,	our	brain	is	already	endowed

with	an	intuitive	logic.	There	are	now	many	variations	of
those	basic	experiments.	They	all	demonstrate	the
extent	to	which	children	behave	like	budding	scientists
who	reason	like	good	statisticians,	eliminating	the	least
likely	hypotheses	and	searching	for	the	hidden	causes
of	various	phenomena.13 	For	example,	the	American
psychologist	Fei	Xu	showed	that	if	eleven-month-olds
see	a	person	draw	a	majority	of	red	balls	from	a
container,	and	then	find	out	that	the	container	holds	a
majority	of	yellow	balls,	they	are	surprised,	of	course,
but	they	also	make	an	additional	inference:	that	the
person	prefers	the	red	balls!14 	And	if	they	see	that	a
draw	is	not	random	but	follows	a	specific	pattern,	say,	a
perfect	alternation	of	a	yellow	ball,	a	red	ball,	a	yellow
ball,	a	red	ball,	and	so	on,	then	they	deduce	that	a
human,	not	a	machine,	made	the	draw.15

Logic	and	probability	are	closely	linked.	As	Sherlock
Holmes	put	it,	“When	you	have	eliminated	the
impossible,	whatever	remains,	however	improbable,
must	be	the	truth.”	In	other	words,	one	can	turn	a



probability	into	a	certainty	by	using	reasoning	to
eliminate	some	of	the	possibilities.	If	a	baby	can	juggle
with	probabilities,	she	must	also	master	logic,	because
logical	reasoning	is	only	the	restriction	of	probabilistic
reasoning	to	probabilities	0	and	1.16 	This	is	exactly
what	the	philosopher	and	developmental	psychologist
Luca	Bonatti	recently	showed.	In	his	experiments,	a	ten-
month-old	baby	first	sees	two	objects,	a	flower	and	a
dinosaur,	hide	behind	a	screen.	Then	one	of	these
objects	exits	from	the	screen,	but	it	is	impossible	to	tell
which	one	because	it	is	partially	hidden	in	a	pot,	so	that
only	the	top	can	be	seen.	Later,	the	dinosaur	exits	from
the	other	side	of	the	screen,	in	full	sight.	At	this	point,
the	child	can	make	a	logical	deduction:	“It	is	either	the
flower	or	the	dinosaur	that	is	hiding	in	the	pot.	But	it
cannot	be	the	dinosaur,	because	I	have	just	seen	it
come	out	from	the	other	side.	So,	it	must	be	the
flower.”	And	it	works:	the	baby	is	not	surprised	if	the
flower	comes	out	of	the	pot,	but	she	is	if	the	dinosaur
comes	out.	Furthermore,	the	baby’s	gaze	reflects	the
intensity	of	her	logical	reasoning:	like	an	adult,	her
pupils	dilate	at	the	precise	moment	when	deduction
becomes	possible.	A	true	Sherlock	Holmes	in	diapers,
the	baby	seems	to	start	with	several	hypotheses	(it	is
either	the	flower	or	the	dinosaur)	and	then	eliminates
some	of	them	(it	cannot	possibly	be	the	dinosaur),	thus



moving	from	probability	to	certainty	(it	must	be	the
flower).
“Probability	theory	is	the	language	of	science,”

Jaynes	tells	us—and	infants	already	speak	this
language:	way	before	they	pronounce	their	first	words,
they	manipulate	probabilities	and	combine	them	in
sophisticated	syllogisms.	Their	sense	of	probability
allows	them	to	draw	logical	conclusions	from	the
observations	they	make.	They	are	constantly
experimenting,	and	their	budding	scientist	brains
ceaselessly	accumulate	the	conclusions	of	their
research.

KNOWLEDGE	OF	ANIMALS	AND	PEOPLE

While	babies	have	a	good	model	of	the	behavior	of
inanimate	objects,	they	also	know	that	there	is	another
category	of	entities	that	behave	entirely	differently:
animate	things.	From	the	first	year	of	life,	babies
understand	that	animals	and	people	have	a	specific
behavior:	they	are	autonomous	and	driven	by	their	own
movements.	Therefore,	they	do	not	have	to	wait	for
another	object	to	bump	into	them,	like	a	pool	ball,	in
order	to	move	around.	Their	movement	is	motivated
from	within,	not	caused	from	the	outside.
Babies	are	therefore	not	surprised	to	see	animals

move	by	themselves.	In	fact,	for	them,	any	object	that
moves	by	itself,	even	if	it	is	in	the	shape	of	a	triangle	or



a	square,	is	immediately	labeled	as	an	“animal,”	and
from	that	moment	on,	everything	changes.	A	small	child
knows	that	living	beings	do	not	have	to	move
according	to	the	laws	of	physics,	but	that	their
movements	are	governed	by	their	intentions	and
beliefs.
Let	us	take	an	example:	if	we	show	babies	a	sphere

that	moves	in	a	straight	line,	jumps	over	a	wall,	then
heads	to	the	right,	little	by	little,	they	will	get	bored	of
it.	Are	they	simply	getting	used	to	this	peculiar	motion?
No,	in	fact,	they	understand	much	more.	They	deduce
that	this	is	an	animate	being	with	a	specific	intention:	it
wants	to	move	to	the	right!	Moreover,	they	can	tell	the
object	is	highly	motivated,	because	it	jumps	over	a	high
wall	in	order	to	get	there.	Now	let’s	remove	the	wall.	In
this	scenario,	babies	are	not	surprised	if	they	see	the
sphere	change	its	motion	and	move	to	the	right	in	a
straight	line,	without	jumping—this	is	simply	the	best
way	to	attain	its	goal.	On	the	other	hand,	babies	open
their	eyes	wide	if	the	sphere	continues	to	jump	in	the
air	for	no	particular	reason,	since	the	wall	has	vanished!
In	the	absence	of	a	wall,	the	same	trajectory	as	in	the
first	scenario	leaves	the	babies	surprised,	because	they
do	not	understand	what	strange	intention	the	sphere
might	have.17 	Other	experiments	show	that	children
routinely	infer	people’s	intentions	and	preferences.	In
particular,	they	understand	that	the	higher	the	wall	is,



the	greater	the	person’s	motivation	must	be	in	order	to
jump	over	it.	From	their	observations,	babies	can	infer
not	only	the	goals	and	intentions	of	those	around	them,
but	also	their	beliefs,	abilities,	and	preferences.18

Infants’	notion	of	living	beings	does	not	end	there.
Around	ten	months,	babies	start	attributing
personalities	to	people:	if	they	see	someone	throw	a
child	to	the	ground,	for	example,	they	deduce	that	this
person	is	ill-intentioned,	and	they	turn	away	from	her.
They	clearly	prefer	a	second	person	who	helps	the	child
get	back	up.19 	Long	before	they	are	able	to
pronounce	the	words	mean	and	nice,	they	are	able	to
formulate	these	concepts	in	their	language	of	thought.
Such	a	judgment	is	quite	subtle:	even	a	nine-month-old
baby	can	distinguish	between	someone	who
intentionally	does	harm	and	someone	who	does	it	by
accident,	or	someone	who	intentionally	refuses	to	help
another	person	and	someone	who	does	not	have	the
opportunity	to	help.20 	As	we	will	see	later,	this	social
skill	plays	a	fundamental	role	in	learning.	Indeed,	even
a	one-year-old	child	understands	if	someone	is	trying	to
teach	him	something.	He	can	tell	the	difference
between	an	ordinary	action	and	an	action	with	the	goal
of	teaching	something	new.	In	this	respect,	a	one-year-
old	child	already	possesses,	according	to	the	Hungarian
psychologist	György	Gergely,	an	innate	sense	of
pedagogy.



FACE	PERCEPTION

One	of	the	earliest	manifestations	of	infants’	social	skills
is	the	perception	of	faces.	For	adults,	the	slightest	hint
suffices	to	trigger	the	perception	of	a	face:	a	cartoon,	a
smiley,	a	mask	….	Some	people	even	detect	the	face	of
Jesus	Christ	in	the	snow	or	on	burnt	toast!	Remarkably,
this	hypersensitivity	to	faces	is	already	present	at	birth:
a	baby	a	few	hours	old	turns	its	head	more	quickly	to	a
smiley	face	than	to	a	similar	image	turned	upside	down
(even	if	the	experimenter	ensures	that	the	newborn	has
never	had	the	chance	to	see	a	face).	One	team	even
managed	to	present	a	pattern	of	light	to	fetuses
through	the	wall	of	the	uterus.21 	Surprisingly,	the
researchers	showed	that	three	dots	arranged	in	the
shape	of	a	face	( )	attracted	the	fetus	more	than	three
dots	arranged	in	the	shape	of	a	pyramid	( ).	Face
recognition	seems	to	start	in	utero!
Many	researchers	believe	that	this	magnetic

attraction	to	faces	plays	an	essential	role	in	the	early
development	of	attachment—especially	since	one	of
the	earliest	symptoms	of	autism	is	avoiding	eye	contact.
By	attracting	our	eyes	to	faces,	an	innate	bias	would
force	us	to	learn	to	recognize	them—and	indeed,	as
early	as	a	couple	of	months	after	birth,	a	region	of	the
visual	cortex	of	the	right	hemisphere	begins	to	respond
to	faces	more	than	to	other	images,	such	as	places.22

The	specialization	for	faces	is	one	of	the	best	examples



of	the	harmonious	collaboration	between	nature	and
nurture.	In	this	domain,	babies	exhibit	strictly	innate
skills	(a	magnetic	attraction	to	face-like	pictures),	but
also	an	extraordinary	instinct	to	learn	the	specifics	of
face	perception.	It	is	precisely	the	combination	of	these
two	factors	that	allows	babies,	in	a	little	less	than	a	year,
to	go	beyond	naively	reacting	to	the	mere	presence	of
two	eyes	and	a	mouth	and	to	start	preferring	human
faces	to	those	of	other	primates,	such	as	monkeys	and
chimpanzees.23

THE	LANGUAGE	INSTINCT

The	social	skills	of	small	children	are	manifest	not	only
in	vision,	but	also	in	the	auditory	domain—spoken
language	comes	to	them	just	as	easily	as	face
perception.	As	Steven	Pinker	famously	noted	in	his
best-selling	book	The	Language	Instinct	(1994),
“Humans	are	so	innately	hardwired	for	language	that
they	can	no	more	suppress	their	ability	to	learn	and	use
language	than	they	can	suppress	the	instinct	to	pull	a
hand	back	from	a	hot	surface.”	This	statement	should
not	be	misunderstood:	obviously,	babies	are	not	born
with	a	full-blown	lexicon	and	grammar,	but	they	possess
a	remarkable	capacity	to	acquire	them	in	record	time.
What	is	hardwired	in	them	is	not	so	much	language
itself	as	the	ability	to	acquire	it.



Much	evidence	now	confirms	this	early	insight.	Right
from	birth,	babies	already	prefer	listening	to	their	native
language	rather	than	to	a	foreign	one24 —a	truly
extraordinary	finding	which	implies	that	language
learning	starts	in	utero.	In	fact,	by	the	third	trimester	of
pregnancy,	the	fetus	is	already	able	to	hear.	The
melody	of	language,	filtered	through	the	uterine	wall,
passes	on	to	babies,	and	they	begin	to	memorize	it.
“As	soon	as	the	sound	of	your	greeting	reached	my
ears,	the	baby	in	my	womb	leaped	for	joy,”	said	the
pregnant	Elizabeth	when	Mary	visited	her.25 	The
Evangelist	was	not	mistaken:	in	the	last	few	months	of
pregnancy,	the	growing	fetus’s	brain	already	recognizes
certain	auditory	patterns	and	melodies,	probably
unconsciously.26

This	innate	ability	is	obviously	easier	to	study	in
premature	babies	than	in	fetuses.	Out	of	the	womb,	we
can	equip	their	tiny	heads	with	miniature
electroencephalography	and	cerebral	blood	flow
sensors	and	peek	into	their	brains.	With	this	method,
my	wife,	professor	Ghislaine	Dehaene-Lambertz,
discovered	that	even	babies	born	two	and	a	half
months	before	term	respond	to	spoken	language:	their
brain,	although	immature,	already	reacts	to	changes	in
syllables	as	well	as	in	voices.27

It	was	long	thought	that	language	acquisition	does
not	begin	until	one	or	two	years	of	age.	Why?	Because



—as	its	Latin	name,	infans,	suggests—a	newborn	child
does	not	speak	and	therefore	hides	its	talents.	And	yet,
in	terms	of	language	comprehension,	a	baby’s	brain	is	a
true	statistical	genius.	To	show	this,	scientists	had	to
deploy	a	whole	panoply	of	original	methods,	including
the	measurement	of	infants’	preferences	for	speech	and
nonspeech	stimuli,	their	responses	to	change,	the
recording	of	their	brain	signals	….	These	studies	gave
converging	results	and	revealed	how	much	infants
already	know	about	language.	Right	at	birth,	babies	can
tell	the	difference	between	most	vowels	and
consonants	in	every	language	in	the	world.	They
already	perceive	them	as	categories.	Take,	for	instance,
the	syllables	/ba/,	/da/,	and	/ga/:	even	if	the
corresponding	sounds	vary	continuously,	babies’	brains
treat	them	as	distinct	categories	separated	by	sharp
borders,	just	like	adults.
These	early	innate	skills	become	shaped	by	the

linguistic	environment	during	the	first	year	of	life.
Babies	quickly	notice	that	certain	sounds	are	not	used
in	their	language:	English	speakers	never	utter	vowels
like	the	French	/u/	and	/eu/,	and	Japanese	locutors	fail
to	differentiate	between	/R/	and	/L/.	In	just	a	few
months	(six	for	vowels,	twelve	for	consonants),	the
baby’s	brain	sorts	through	its	initial	hypotheses	and
keeps	only	the	phonemes	that	are	relevant	to	the
languages	that	are	present	in	its	environment.



But	that’s	not	all:	babies	quickly	start	to	learn	their
first	words.	How	do	they	go	about	identifying	them?
First,	babies	rely	on	prosody,	the	rhythm	and	intonation
of	speech—the	way	our	voices	rise,	fall,	or	stop,	thus
marking	the	boundaries	between	words	and	sentences.
Another	mechanism	identifies	which	speech	sounds
follow	each	other.	Again,	babies	behave	like	budding
statisticians.	They	realize,	for	example,	that	the	syllable
/bo/	is	often	followed	by	/t^l/.	A	quick	calculation	of
probabilities	tells	them	that	this	cannot	be	due	to
chance:	/t^l/	follows	/bo/	with	too	high	a	probability;
these	syllables	must	form	a	word,	“bottle”—and	this	is
how	this	word	is	added	to	the	child’s	vocabulary	and
can	later	be	related	to	a	specific	object	or	concept.28

As	early	as	six	months	of	age,	children	have	already
extracted	the	words	that	recur	with	a	high	frequency	in
their	environment,	such	as	“baby,”	“daddy,”
“mommy,”	“bottle,”	“foot,”	“drink,”	“diaper,”	and	so
forth.	These	words	become	engraved	in	their	memory
to	such	an	extent	that,	as	adults,	they	continue	to	hold
a	special	status	and	are	processed	more	effectively	than
other	words	of	comparable	meaning,	sound,	and
frequency	acquired	later	in	life.
Statistical	analysis	also	allows	babies	to	identify

certain	words	that	occur	more	frequently	than	others:
small	grammatical	words	such	as	articles	(a,	an,	the)	and
pronouns	(I,	you,	he,	she,	it	…).	By	the	end	of	their	first



year,	babies	already	know	many	of	them,	and	they	use
them	to	find	other	words.	If,	for	example,	they	hear	one
of	their	parents	say,	“I	made	a	cake,”	they	can	parse
out	the	small	function	words	“I”	and	“a”	and,	by
elimination,	discover	that	“made”	and	“cake”	are	also
words.	They	already	understand	that	a	noun	often
comes	after	an	article	and	a	verb	usually	comes	after	a
pronoun—to	such	an	extent	that,	around	twenty
months	of	age,	babies	react	with	utter	surprise	if	they
are	told	incoherent	phrases	like	“I	bottle”	or	“the
finishes.”29

Of	course,	such	a	probabilistic	analysis	isn’t	entirely
foolproof.	When	French	children	hear	“un	avion”	(an
airplane),	which	is	pronounced	with	a	liaison	(the	n	of
“un”	melds	into	the	a	of	“avion”),	they	improperly	infer
the	existence	of	the	word	navion	(“Regarde	le
navion!”).	Conversely,	English	speakers	imported	the
French	word	napperon	(place	mat)	and,	due	to	incorrect
parsing	of	the	phrase	un	napperon,	invented	the	word
apron.
Such	shortcomings	are	rare,	however.	In	a	few

months,	children	quickly	manage	to	surpass	any
existing	artificial	intelligence	algorithm.	By	the	time	they
blow	out	their	first	candle,	they	have	already	laid	down
the	foundation	for	the	main	rules	of	their	native
language	at	several	levels,	from	elementary	sounds



(phonemes)	to	melody	(prosody),	vocabulary	(lexicon),
and	grammar	rules	(syntax).
No	other	primate	species	is	capable	of	such	abilities.

This	very	experiment	has	been	attempted	many	times:
several	scientists	tried	adopting	baby	chimpanzees,
treating	them	like	family	members,	speaking	to	them	in
English	or	sign	language	or	with	visual	symbols	…	only
to	find	out,	a	few	years	later,	that	none	of	these	animals
mastered	a	language	worthy	of	the	name:	they	knew,	at
most,	a	few	hundred	words.30 	The	linguist	Noam
Chomsky,	therefore,	was	probably	right	in	postulating
that	our	species	is	born	with	a	“language	acquisition
device,”	a	specialized	system	that	is	automatically
triggered	in	the	first	years	of	life.	As	Darwin	said	in	The
Descent	of	Man	(1871),	language	“certainly	is	not	a	true
instinct,	for	every	language	has	to	be	learnt,”	but	it	is
“an	instinctive	tendency	to	acquire	an	art.”	What	is
innate	in	us	is	the	instinct	to	learn	any	language—an
instinct	so	irrepressible	that	language	appears
spontaneously	within	a	few	generations	in	humans
deprived	of	it.	Even	in	deaf	communities,	a	highly
structured	sign	language,	with	universal	linguistic
characteristics,	emerges	from	the	second	generation
on.31







CHAPTER	4

The	Birth	of	a	Brain

The	child	is	born	with	an	unfinished	brain	and
not,	as	the	postulate	of	the	old	pedagogy
affirmed,	with	an	unoccupied	brain.

Gaston	Bachelard,	The	Philosophy	of	No:	A
Philosophy	of	the	New	Scientific	Mind	(1940)

Genius	without	education	is	like	silver	in	the
mine.

Benjamin	Franklin	(1706–1790)

THE	FACT	THAT	NEWBORN	BABIES	IMMEDIATELY	EXHIBIT
SOPHISTICATED	knowledge	of	objects,	numbers,	people,
and	languages	refutes	the	hypothesis	that	their	brains
are	nothing	but	blank	slates,	sponges	that	absorb
whatever	the	environment	imposes	on	them.	A	simple
prediction	ensues:	if	we	could	dissect	the	brain	of	a
newborn,	we	should	observe,	at	birth	and	perhaps	even
earlier,	well-organized	neuronal	structures
corresponding	to	each	of	those	major	domains	of
knowledge.



This	idea	has	long	been	contested.	Until	about
twenty	years	ago,	the	newborn’s	brain	was	terra
incognita.	Brain	imaging	had	just	been	invented—it	had
not	been	applied	to	developing	brains	yet—and	the
predominant	theoretical	vision	was	that	of	empiricism,
the	idea	that	the	brain	is	born	void	of	all	knowledge,
influenced	only	by	its	environment.	It	was	only	with	the
advent	of	sophisticated	magnetic	resonance	imaging
(MRI)	methods	that	we	were	finally	able	to	visualize	the
early	organization	of	the	human	brain	and	discover	that,
in	agreement	with	our	expectations,	virtually	all	the
circuits	of	the	adult	brain	are	already	present	in	that	of	a
newborn	baby.

THE	INFANT	BRAIN	IS	WELL	ORGANIZED

My	wife,	Ghislaine	Dehaene-Lambertz,	and	I,	along	with
our	neurologist	colleague	Lucie	Hertz-Pannier,	were
among	the	first	to	use	functional	MRI	in	two-month-old
babies.1 	Of	course,	we	heavily	relied	on	the	previous
experience	of	pediatricians.	Fifteen	years	of	clinical
experience	had	convinced	them	that	MRI	was	a
harmless	exam	that	one	could	prescribe	to	individuals
of	any	age,	including	premature	infants.	However,
practitioners	resorted	to	this	technology	only	for
diagnostic	purposes,	in	order	to	detect	early	lesions.
No	one	had	used	functional	MRI	in	normally	developing
babies	to	see	if	their	brain	circuits	could	be	selectively



activated	to	certain	stimuli.	To	achieve	this,	we	had	to
overcome	a	whole	series	of	difficulties.	We	designed	a
noise-reducing	helmet	to	protect	the	babies	from	the
loud	noise	of	the	machine;	we	kept	them	still	by
snuggly	swaddling	them	in	a	cradle	made	to	fit	the
shape	of	the	MRI	coil;	we	reassured	them	by
progressively	acclimating	them	to	the	unusual
environment;	and	we	permanently	kept	an	eye	on	them
from	outside	the	machine.
In	the	end,	our	efforts	were	rewarded	with

spectacular	results.	We	had	chosen	to	focus	on
language	because	we	knew	that	babies	began	to	learn
it	very	quickly	over	the	course	of	their	first	year	of	life.
And	indeed,	we	observed	that	at	two	months	after
birth,	when	babies	heard	sentences	in	their	native
language,	they	activated	the	very	same	regions	of	the
brain	as	adults	(see	figure	6	in	the	color	insert).
When	we	hear	a	sentence,	the	first	region	of	the

cortex	to	activate	is	the	primary	auditory	area—this	is
the	entry	point	for	all	auditory	information	into	the
brain.	This	area	also	lit	up	in	the	infant	brain	as	soon	as
the	sentence	began.	This	may	seem	obvious	to	you,	but
at	the	time,	it	was	not	self-evident	for	very	young
infants.	Some	researchers	presumed	that	the	sensory
areas	of	children’s	brains	are	so	disorganized	at	birth
that	their	senses	tend	to	blend.	According	to	these
researchers,	for	several	weeks,	a	baby’s	brain	mixes



hearing,	vision,	and	touch,	and	it	takes	some	time	for
the	baby	to	learn	to	separate	these	sensory
modalities.2 	We	know	today	that	this	is	false—from
birth	on,	hearing	activates	the	auditory	areas,	vision
activates	the	visual	areas,	and	touch	activates	the	areas
associated	with	tactile	sensation,	without	us	ever	having
to	learn	this.	The	subdivision	of	the	cortex	into	distinct
territories	for	each	of	the	senses	is	given	to	us	by	our
genes.	All	mammals	possess	it,	and	its	origin	is	lost	in
the	arborescence	of	our	evolution	(see	figure	7	in	the
color	insert).3

But	let’s	go	back	to	our	experiment	where	babies
listened	to	sentences	in	the	MRI	scanner.	After	entering
the	primary	auditory	area,	the	activity	spread	rapidly.	A
fraction	of	a	second	later,	other	areas	lit	up,	in	a	fixed
order:	first,	the	secondary	auditory	regions,	adjacent	to
the	primary	sensory	cortex;	then	a	whole	set	of
temporal	lobe	regions,	forming	a	gradual	stream;	and
finally	Broca’s	area,	at	the	base	of	the	left	frontal	lobe,
simultaneously	with	the	tip	of	the	temporal	lobe.	This
sophisticated	information	processing	chain,	lateralized
to	the	left	hemisphere,	is	remarkably	similar	to	that	of
an	adult.	At	two	months,	babies	already	activate	the
same	hierarchy	of	phonological,	lexical,	syntactic,	and
semantic	brain	areas	as	adults.	And,	just	as	in	adults,
the	more	the	signal	climbs	up	in	the	hierarchy	of	the
cortex,	the	slower	the	brain	responses	are	and	the	more



these	areas	integrate	information	on	an	increasingly
high	level	(see	figure	6	in	the	color	insert).4

Of	course,	two-month-old	babies	do	not	yet
understand	the	sentences	that	they	hear;	they	have	yet
to	discover	words	and	grammatical	rules.	However,	in
their	brains,	linguistic	information	is	channeled	into
highly	specialized	circuits	similar	to	those	of	adults.
Babies	learn	to	understand	and	speak	so	quickly—while
all	other	primates	are	unable	to	do	so—probably
because	their	left	hemisphere	comes	equipped	with	a
predetermined	hierarchy	of	circuits	that	specialize	in
detecting	statistical	regularities	for	all	aspects	of
speech:	sound,	word,	sentence,	and	text.

LANGUAGE	HIGHWAYS

Activity	flows	through	all	these	brain	areas	in	a	specific
order	because	they	are	connected	to	one	another.	In
adults,	we	are	beginning	to	understand	which	neuronal
pathways	interconnect	the	language	regions.	In
particular,	neurologists	have	discovered	that	a	large
cable	made	of	millions	of	nerve	fibers,	called	the
“arcuate	fasciculus,”	connects	the	temporal	and	parietal
language	areas	at	the	back	of	the	brain	with	frontal
areas,	notably	the	famous	Broca’s	area.	This	bundle	of
connections	is	a	marker	of	the	evolution	of	language.	It
is	much	larger	in	the	left	hemisphere,	which,	in	96
percent	of	right-handers,	is	devoted	to	language.	Its



asymmetry	is	specific	to	humans	and	is	not	observed	in
other	primates,	not	even	our	closest	cousins,	the
chimpanzees.
Once	again,	this	anatomical	characteristic	is	not	the

outcome	of	learning:	it	is	there	from	the	start.	In	fact,
when	we	examine	the	connections	of	a	newborn’s
brain,	we	discover	that	not	only	the	arcuate	fasciculus
but	all	the	major	fiber	bundles	that	connect	cortical	and
subcortical	brain	areas	are	in	place	at	birth	(see	figure	8
in	the	color	insert).5

These	“highways	of	the	brain”	are	built	during	the
third	trimester	of	pregnancy.	During	the	construction	of
the	cortex,	each	growing	excitatory	neuron	sends	out
its	axon	to	explore	the	surrounding	regions,	sometimes
up	to	several	centimeters	away,	like	a	Christopher
Columbus	of	the	brain.	This	exploration	is	guided	and
channeled	by	chemical	messages,	molecules	whose
concentrations	vary	from	one	region	to	another	and
which	act	as	spatial	labels.	The	axon	head	literally	sniffs
out	this	chemical	path	laid	out	by	our	genes,	and
deduces	the	direction	in	which	it	must	go.	Thus,	without
any	intervention	from	the	outside	world,	the	brain	self-
organizes	into	a	network	of	crisscrossed	connections,
several	of	which	are	specific	to	the	human	species.	As
we	will	see	in	a	moment,	this	network	can	be	further
refined	by	learning—but	the	initial	scaffolding	is	innate
and	built	in	utero.



Should	we	be	surprised?	Only	twenty	years	ago,
many	researchers	considered	it	extremely	unlikely	that
the	brain	was	anything	else	but	a	disorganized	mass	of
random	connections.6 	They	could	not	imagine	that	our
DNA,	which	contains	only	a	limited	number	of	genes,
could	host	a	detailed	blueprint	of	the	highly	specialized
circuits	that	support	vision,	language,	and	motor	skills.
But	this	is	improper	reasoning.	Our	genome	contains	all
the	details	of	our	body:	it	knows	how	to	make	a	heart
with	four	chambers;	it	routinely	constructs	two	eyes,
twenty-four	vertebrae,	the	inner	ear	and	its	three
perpendicular	channels,	ten	fingers	and	their
phalanges,	all	with	extreme	reproducibility	…	so	why
not	a	brain	with	multiple	internal	subregions?
Recent	advances	in	biological	imaging	have	revealed

how,	as	early	as	the	first	two	months	of	pregnancy,
when	the	fingers	of	the	hand	are	still	only	buds,	they
are	already	invaded	by	three	nerves,	the	radial,	the
median,	and	the	ulnar,	each	targeting	specific	end
points	(see	figure	8	in	the	color	insert).7 	The	same
high-precision	mechanics	may	therefore	exist	in	the
brain:	just	as	the	bud	of	the	hand	splits	into	five	fingers,
the	cortex	subdivides	into	several	dozen	highly
specialized	regions	separated	by	sharp	borders	(see
figure	9	in	the	color	insert).8 	As	early	as	the	first
months	of	pregnancy,	many	genes	are	selectively
expressed	at	different	points	in	the	cortex.9 	Around



twenty-eight	weeks	of	gestation,	the	brain	begins	to
fold,	and	the	main	sulci	that	characterize	the	human
brain	appear.	In	thirty-five-week-old	fetuses,	all	the
major	folds	of	the	cortex	are	well	formed,	and	the
characteristic	asymmetry	of	the	temporal	region,	which
houses	the	language	areas,	can	already	be	seen.10

THE	SELF-ORGANIZATION	OF	THE	CORTEX

Throughout	pregnancy,	as	cortical	connections
develop,	so	do	the	corresponding	cortical	folds.	In	the
second	trimester,	the	cortex	is	initially	smooth;	then,	a
first	set	of	ridges	emerges,	reminiscent	of	the	monkey
brain;	and	finally,	we	begin	to	see	the	secondary	and
tertiary	folds	typical	of	the	human	brain—folds	upon
folds	upon	folds.	Their	epigenesis	gradually	becomes
more	and	more	dependent	on	the	activity	of	the
nervous	system.	Depending	on	the	feedback	that	the
brain	receives	from	the	senses,	some	circuits	stabilize,
while	others,	useless,	degenerate.	Thus,	the	folding	of
the	motor	cortex	ends	up	being	slightly	different	in	left-
handers	and	right-handers.	Interestingly,	left-handed
individuals	who	were	forced	to	write	with	their	right
hand	as	children	show	a	sort	of	compromise:	the	shape
of	their	motor	cortex	is	typical	of	a	left-hander,	but	its
size	exhibits	the	left-right	asymmetry	of	a	right-handed
person.11 	As	the	authors	of	this	study	conclude,
“cortical	morphology	in	adults	holds	an	accumulated



record	of	both	innate	biases	and	early	developmental
experience.”
Cortical	folds	in	the	fetus’s	brain	owe	their

spontaneous	formation	to	a	biochemical	self-
organization	process	that	depends	on	both	the	genes
and	the	chemical	environment	of	the	cells,	requiring
extremely	little	genetic	information	and	no	learning	at
all.12 	Such	self-organization	isn’t	nearly	as	paradoxical
as	it	sounds—in	fact,	it	is	omnipresent	on	earth.	Picture
the	cortex	as	a	sandy	beach	on	which	ripples	and	pools
form,	at	multiple	scales,	as	the	tides	come	and	go.	Or
imagine	it	as	a	desert	in	which	wrinkles	and	dunes
appear	under	the	relentless	action	of	the	wind.	In	fact,
stripes,	spots,	and	hexagonal	cells	emerge	in	all	kinds
of	biological	or	physical	systems	on	many	scales,	from
fingerprints	to	zebra	skin,	leopard	spots,	basalt	columns
in	volcanoes,	desert	dunes,	and	regularly	spaced	clouds
in	a	summer	sky.	The	British	mathematician	Alan	Turing
was	the	first	to	explain	this	phenomenon:	all	that	is
needed	is	a	process	of	local	amplification	and	inhibition
at	a	distance.	When	the	wind	blows	over	a	beach,	as
grains	of	sand	begin	to	accumulate,	a	self-amplification
process	begins:	the	emerging	bump	tends	to	catch
other	grains	of	sand,	while	behind	it,	the	wind	swirls
and	tears	away	at	the	sand;	after	a	few	hours,	a	dune	is
born.	As	soon	as	there	is	local	excitation	and	inhibition
at	a	distance,	we	can	see	a	dense	region	(the	dune)



appear,	surrounded	by	a	less	dense	region	(the	hollow
side),	itself	followed	by	another	dune,	ad	infinitum.
Depending	on	the	exact	circumstances,	the	patterns
that	spontaneously	emerge	form	spots,	stripes,	or
hexagons.
Self-organization	is	ubiquitous	in	the	developing

brain:	our	cortex	is	full	of	columns,	stripes,	and	sharp
borders.	Spatial	segregation	seems	to	be	one	of	the
mechanisms	by	which	the	genes	lay	out	neuronal
modules	specialized	for	processing	different	types	of
information.	The	visual	cortex,	for	example,	is	covered
with	alternating	bands	that	process	information	from
the	left	and	right	eyes—they	are	called	“ocular
dominance	columns”	and	they	emerge	spontaneously
in	the	developing	brain,	using	the	information	arising
from	intrinsic	activity	in	the	retina.	But	similar
mechanisms	of	self-organization	can	occur	at	a	higher
level,	not	necessarily	to	tile	the	surface	of	the	cortex,
but	to	cover	more	abstract	space.	One	of	the	most
spectacular	examples	is	the	existence	of	grid	cells—
neurons	that	encode	the	location	of	a	rat	by	paving
space	with	a	grid	of	triangles	and	hexagons	(see	figure
10	in	the	color	insert).
Grid	cells	are	neurons	located	in	a	specific	region	of

the	rat	brain	called	the	“entorhinal	cortex.”	Edvard	and
May-Britt	Moser	earned	the	Nobel	Prize	in	2014	for
discovering	their	remarkable	geometrical	properties.



They	were	the	first	to	record	from	neurons	in	the
entorhinal	cortex	while	the	animal	moved	around	in	a
very	large	room.13 	We	already	knew	that	in	a	nearby
region	called	the	“hippocampus,”	neurons	behaved	as
“place	cells”:	they	fired	only	if	the	animal	was	in	a
specific	location	in	the	room.	The	Moser’s
groundbreaking	discovery	was	that	grid	cells	did	not
respond	to	just	a	single	place,	but	to	a	whole	set	of
positions.	Furthermore,	those	privileged	locations	which
made	a	given	cell	fire	were	regularly	arrayed:	they
formed	a	network	of	equilateral	triangles	that	grouped
together	to	form	hexagons,	a	bit	like	the	spots	on	the
skin	of	a	giraffe	or	the	basalt	columns	in	volcanic	rocks!
Whenever	the	animal	walks	around,	even	in	darkness,
the	firing	of	each	grid	cell	tells	the	rat	where	it	is	in
relation	to	a	network	of	triangles	that	span	the	entire
space.	The	Nobel	committee	rightly	called	this	system
the	“GPS	of	the	brain”:	it	provides	a	highly	reliable
neuronal	coordinate	system	that	maps	external	space.
But	why	do	neuronal	maps	use	triangles	and

hexagons,	rather	than	the	rectangles	and	perpendicular
lines	of	our	usual	charts?	Since	Descartes,
mathematicians	and	cartographers	have	always	relied
on	two	perpendicular	axes	called	“Cartesian
coordinates”	(x	and	y,	abscissa	and	ordinate,	longitude
and	latitude).	Why	does	the	rat	brain	prefer	to	rely	on	a
set	of	triangles	and	hexagons?	Most	likely	because	the



grid-cell	neurons	self-organize	during	development—
and	in	nature,	such	self-organization	frequently
produces	hexagons,	from	giraffe	skin	to	beehives	to
volcanic	columns.	Physicists	now	understand	why
hexagonal	shapes	are	so	ubiquitous:	they
spontaneously	emerge	whenever	a	system	starts	from	a
disorganized	“hot”	state	and	slowly	cools	down,
eventually	freezing	into	a	stable	structure	(see	figure	10
in	the	color	insert).	Researchers	have	proposed	a	similar
theory	for	the	emergence	of	grid	cells	in	the	entorhinal
cortex	during	brain	development:	disorganized	groups
of	neurons	would	progressively	settle	down	into	an
organized	set	of	grid	cells,	with	hexagons	emerging	as
a	spontaneous	attractor	of	the	dynamics	of	the
cortex.14 	According	to	this	theory,	no	teaching	signal
is	required	for	the	rat	to	grow	a	grid-like	map.	In	fact,
the	setting	up	of	this	circuit	does	not	involve	any
learning	at	all:	it	naturally	emerges	from	the	dynamics
of	the	developing	cortex.
This	theory	of	the	self-organization	of	brain	maps	is

beginning	to	be	successfully	tested.	Extraordinary
experiments	show	that	the	brain’s	GPS	does	indeed
emerge	very	early	on	during	rat	development.	Two
independent	groups	of	researchers	succeeded	in
implanting	electrodes	in	baby	rats,	barely	born,	before
they	even	started	to	walk.15 	Using	this	setup,	they
examined	whether	grid	cells	were	already	present	in	the



entorhinal	cortex.	They	also	probed	place	cells	(those
that	respond	to	a	single	location)	and	head	direction
cells,	a	third	type	of	neuron	that	functions	like	a	ship’s
compass:	each	neuron	fires	when	the	animal	moves	in	a
certain	direction,	for	example,	northwest	or	southeast.
What	the	researchers	found	is	that	this	whole	system	is
practically	innate:	the	head	direction	cells	are	present
as	soon	as	one	can	record,	and	the	place	and	grid	cells
emerge	one	or	two	days	after	the	baby	rat	has	begun
moving	around.
The	data	are	lovely,	but	they	should	hardly	be

surprising:	for	most	animals,	from	ants	to	birds,	reptiles,
and	mammals,	map	making	is	a	major	matter.	As	soon
as	pups,	kittens,	or	babies	leave	the	nest	and	explore
the	world,	it	is	crucial	to	their	survival	that	they	know
where	they	are	at	all	times	and	can	find	their	way	home,
where	their	mothers	await	them.	Eons	ago,	evolution
seems	to	have	hit	upon	a	way	to	provide	the	nascent
brain	with	a	compass,	a	map,	and	a	record	of	the	places
it	visits.
Indeed,	does	this	neuronal	GPS	exist	in	the	human

brain?	Yes.	We	now	know,	by	indirect	means,	that	the
adult	brain	also	contains	a	neuronal	map	with
hexagonal	symmetry,	in	exactly	the	same	place	as	in
rats	(the	entorhinal	cortex).16 	And	we	also	know	that
very	small	children	already	have	a	sense	of	space.
Toddlers	have	no	difficulty	orienting	themselves	in	a



room:	if	they	are	taken	from	point	A	to	point	B,	then	to
point	C,	they	will	know	how	to	return	in	a	straight	line
from	C	to	A—and	remarkably,	they	do	so	even	if	they
are	blind	from	birth.	The	young	of	the	human	species
thus	possess,	like	rats,	a	mental	module	for	spatial
navigation.17 	We	have	not	yet	managed	to	directly	see
this	map	in	the	baby’s	brain,	because	it	remains
extraordinarily	difficult	to	obtain	images	of	a	brain	in
action	at	this	very	young	age	(try	doing	an	MRI	on	a
crawling	baby).	But	we	are	pretty	sure	that	we	will	find	it
one	day,	as	soon	as	mobile	brain-imaging	methods
become	available.
I	could	go	on	and	on	about	the	examples	of	other

specialized	modules	in	a	baby’s	brain.	We	know,	for
example,	that	as	early	as	a	few	months	of	age	(although
perhaps	not	at	birth),	the	visual	cortex	contains	a	region
that	responds	preferentially	to	faces,	more	so	than	to
images	of	houses.18 	The	formation	of	this	region
seems	to	be	partly	the	result	of	learning,	but	it	is	tightly
channeled,	guided,	and	constrained	by	the	brain’s
connectivity.	Those	connections	ensure	that	the	same
location,	give	or	take	a	few	millimeters,	specializes	for
faces	in	all	individuals—it	ends	up	forming	one	of	the
most	specific	modules	of	the	cortex,	a	patch	where	up
to	98	percent	of	neurons	specialize	for	faces	and	barely
respond	to	other	pictures.



To	take	another	example,	we	also	know	that	a	baby’s
parietal	cortex	already	responds	to	the	number	of
objects,19 	at	a	location	that	matches	the	region	which
is	activated	when	a	human	adult	calculates	2	+	2,	or
when	a	monkey	memorizes	a	number	of	objects.	In
monkeys,	the	German	neuroscientist	Andreas	Nieder
successfully	demonstrated	that	this	region	contains
neurons	sensitive	to	the	number	of	objects:	there	are
specialized	neurons	for	one	object,	others	for	two
objects,	three	objects,	and	so	on	and	so	forth	…	and
these	neurons	are	present	even	if	the	monkey	in
question	has	never	been	trained	to	perform	a	numerical
task.	We	therefore	think	that	these	modules	initially
emerge	on	an	innate	basis,	even	if	the	environment
later	shapes	them.	My	colleagues	and	I	have	proposed
a	precise	mathematical	model	for	the	self-organization
of	number	neurons,	this	time	based	on	a	wavelike
propagation	of	activity	along	the	surface	of	the
developing	cortex.	This	theory	can	explain	the
properties	of	number	neurons	in	every	detail.	In	the
model,	these	cells	end	up	forming	a	sort	of	number	line
—a	linear	chain	that	spontaneously	emerges	out	of	a
network	of	randomly	connected	neurons	in	which	the
numbers	one,	two,	three,	four,	and	so	on	occupy
successive	positions.20

The	concept	of	self-organization	departs	radically
from	the	classical—but	wrong—view	of	the	brain	as	a



blank	slate,	largely	devoid	of	initial	structure	and
dependent	on	the	environment	to	configure	it.	Contrary
to	this	view,	little	or	no	data	is	needed	for	the	brain	to
grow	a	map	or	a	number	line.	Self-organization	also
sets	the	brain	apart	from	the	artificial	neural	networks
that	currently	dominate	the	engineering	approaches	to
artificial	intelligence.	Nowadays,	AI	has	become	virtually
synonymous	with	big	data—because	those	networks
are	incredibly	data-hungry	and	begin	to	act	intelligently
only	after	they	have	been	fed	with	gigabytes	of	data.
Unlike	them,	however,	our	brain	does	not	require	so
much	experience.	Quite	the	contrary,	the	main	nodes	of
our	brain,	the	modules	where	our	core	knowledge	is
stored,	seem	to	develop	largely	spontaneously,
perhaps	purely	through	internal	simulation.
Only	a	handful	of	contemporary	computer	scientists,

such	as	MIT	professor	Josh	Tenenbaum,	are	seriously
attempting	to	incorporate	this	type	of	self-organization
into	artificial	intelligence.	Tenenbaum	and	his
colleagues	are	working	on	the	“virtual	baby	project”—a
system	that	would	come	into	the	world	with	the	ability
to	self-generate	millions	of	thoughts	and	images.	These
internally	generated	data	would	then	serve	as	a	basis
for	learning	in	the	rest	of	the	system,	without	the	need
to	provide	any	additional	external	data.	According	to
this	radical	vision,	even	before	birth,	the	foundations	of
our	core	brain	circuits	arise	through	self-organization,



by	bootstrapping	themselves	from	a	database
generated	inside	the	system.21 	Most	of	the	initial
groundwork	occurs	internally,	in	the	absence	of	any
interaction	with	the	outside	world;	only	the	final
adjustments	are	left	to	learning,	shaped	by	the
additional	data	that	we	receive	from	our	environment.
The	conclusion	that	emerges	from	this	line	of

research	emphasizes	the	joint	power	of	genes	and	self-
organization	in	the	development	of	the	human	brain.	At
birth,	the	baby’s	cortex	is	folded	almost	like	an	adult’s.
It	is	already	subdivided	into	specialized	sensory	and
cognitive	areas,	which	are	interconnected	by	precise
and	reproducible	bundles	of	fibers.	It	hosts	a	collection
of	partially	specialized	modules,	each	of	which	projects
a	particular	type	of	representation	onto	the	outside
world.	The	grid	cells	of	the	entorhinal	cortex	draw	two-
dimensional	planes,	perfect	for	coding	and	navigating
space.	As	we	will	see	later,	other	regions,	such	as	the
parietal	cortex,	draw	lines,	excellent	for	coding	linear
quantities	including	number,	size,	and	the	passing	of
time;	and	Broca’s	area	projects	tree	structures,	ideal	for
coding	the	syntax	of	languages.	From	our	evolution,	we
inherit	a	set	of	fundamental	rules	from	which	we	will
later	select	those	that	best	represent	the	situations	and
concepts	that	we	will	have	to	learn	in	our	lifetime.

THE	ORIGINS	OF	INDIVIDUALITY



By	asserting	the	existence	of	a	universally	human
nature,	an	innate	brain	circuitry	laid	out	by	genes	and
self-organization,	I	do	not	mean	to	deny	the	existence
of	individual	differences.	Wherever	we	zoom	in,	each	of
our	brains	exhibits	unique	traits—even	right	from	the
start.	For	instance,	our	cortical	folds,	much	like	our
fingerprints,	are	laid	down	prior	to	birth	and	vary	in
distinctive	ways—even	in	identical	twins.	Similarly,	the
strength	and	density	of	our	long-distance	cortical
connections,	and	even	their	exact	trajectories,	vary	by	a
large	factor	and	make	each	of	our	“connectomes”
unique.
It	is	important	to	recognize,	however,	that	these

variations	ride	on	a	common	theme.	The	layout	of	the
Homo	sapiens	brain	obeys	a	fixed	scheme,	similar	to
the	succession	of	chords	that	jazz	musicians	memorize
when	they	learn	a	song.	It	is	only	on	top	of	this	human-
universal	grid	that	the	vagaries	of	our	genomes	and	the
quirks	of	our	pregnancies	add	their	personal
improvisations.	Our	individuality	is	real,	but	it	should
not	be	exaggerated:	each	of	us	is	but	a	variation	on	the
Homo	sapiens	melody	line.	In	any	of	us,	black	or	white,
Asian	or	Native	American,	anywhere	on	the	planet,	the
human	brain	architecture	is	always	obvious.	In	that
respect,	the	cortex	of	any	human	differs	from	that	of	our
closest	living	relative,	the	chimpanzee,	just	as	much	as



any	improvisation	on	“My	Funny	Valentine”	departs
from,	say,	one	on	“My	Romance.”
Because	we	all	share	the	same	initial	brain	structure,

the	same	core	knowledge,	and	the	same	learning
algorithms	that	allow	us	to	acquire	additional	talents,
we	often	end	up	sharing	the	same	concepts.	The	same
human	potential	is	present	in	every	person—be	it	for
reading,	science,	or	mathematics,	and	whether	we	are
blind,	deaf,	or	mute.	As	the	British	philosopher	Roger
Bacon	(1220–92)	observed	in	the	thirteenth	century,
“The	knowledge	of	mathematical	things	is	almost
innate	in	us	….	This	is	the	easiest	of	sciences,	a	fact
which	is	obvious	in	that	no	one’s	brain	rejects	it;	for
laymen	and	people	who	are	utterly	illiterate	know	how
to	count	and	reckon.”	The	same,	obviously,	could	be
said	of	language—there	is	virtually	no	child	who	does
not	have	the	powerful	innate	drive	to	acquire	the
language	of	its	surroundings,	whereas,	as	noted	earlier,
no	chimpanzee,	even	those	adopted	by	human	families
at	birth,	ever	mutters	more	than	a	few	words	or
composes	more	than	a	few	signs.
In	brief,	individual	differences	are	real—but	they	are

almost	always	of	degree	rather	than	of	kind.	It	is	only	at
the	extremes	of	the	normal	distribution	of	brain
organization	that	neurobiological	variations	end	up
making	a	real	cognitive	difference.	Increasingly,	we	are
discovering	that	children	with	developmental	disorders



lie	on	the	ends	of	this	distribution.	Their	brains	seem	to
have	taken	a	wrong	turn	on	the	developmental	path
that	leads	from	genetic	inheritance	to	neuronal
migration	and	circuit	self-organization	during
pregnancy.
The	scientific	demonstration	is	increasingly	solid	in

the	case	of	dyslexia,	a	specific	developmental	disorder
that	affects	the	ability	to	learn	to	read	while	leaving
intelligence	and	other	faculties	intact.	If	you	are
dyslexic,	then	any	of	your	siblings	has	a	50	percent
chance	of	also	suffering	from	dyslexia,	thus	pointing	to
the	strong	genetic	determinism	of	this	developmental
disorder.	At	least	four	genes	have	now	been	implicated
in	dyslexia—and	interestingly,	most	of	these	genes
affect	the	ability	of	neurons	to	migrate	to	their	final
locations	in	the	cortex	during	pregnancy.22 	Magnetic
resonance	also	shows	profound	anomalies	in	the
connections	that	support	reading	in	the	left
hemisphere.23 	Crucially,	anomalies	can	be	found	early
on:	in	children	with	a	genetic	predisposition	for
dyslexia,	at	six	months	of	age,	a	deficit	in	distinguishing
the	phonemes	of	spoken	language	already	separates
those	who	will	develop	dyslexia	from	those	who	will
turn	into	normal	readers.24 	Indeed,	phonological
deficits	are	known	to	be	a	major	factor	in	the
emergence	of	dyslexia—but	they	are	not	the	only
cause:	the	reading	circuit	is	complicated	enough	that



there	are	many	places	where	it	may	fail.	Various	types
of	dyslexias	have	been	described,	including	attention
deficits	that	cause	the	child	to	mix	up	the	letters	in
nearby	words25 	and	visual	deficits	that	cause	mirror
confusions.26 	Dyslexia	seems	to	lie	on	the	extreme	of	a
bell-curve	continuum	of	visual,	attentional,	and
phonological	abilities,	ranging	from	full	normality	to
severe	deficit.27 	We	all	share	the	same	Homo	sapiens
makeup,	but	we	differ	slightly	in	the	quantitative
amount	of	our	inheritance,	probably	due	to	semi-
random	variations	in	the	early	layout	of	our	neural
circuits.
Virtually	the	same	story	could	be	told	of	other

developmental	deficits.	Dyscalculia,	for	instance,	has
been	related	to	early	gray-	and	white-matter	deficits	in
the	dorsal	parietal	and	frontal	circuits	that	support
calculation	and	mathematics.28 	Premature	children,
who	may	suffer	from	periventricular	infarcts	in	the
parietal	region	supporting	number	sense,	are	at	a
greater	risk	of	dyscalculia.29 	Early	neurological
disorganization	may	cause	dyscalculia	either	by	directly
impacting	the	core	knowledge	of	sets	and	quantities,	or
by	disconnecting	it	from	other	areas	involved	in
acquiring	number	words	and	the	symbols	of	arithmetic.
In	either	case,	the	outcome	is	a	predisposition	for
childhood	difficulties	in	acquiring	math.	Those	children



are	likely	to	require	specific	help	to	strengthen	their
weak	initial	intuitions	of	quantities.
With	our	black-and-white	minds,	we	tend	to

exaggerate	the	consequences	of	these	scientific
discoveries	on	the	genetic	underpinnings	of
developmental	deficits.	None	of	the	genes	that	are
involved	in	dyslexia,	dyscalculia,	or,	for	that	matter,	any
other	developmental	syndrome,	including	autism	and
schizophrenia,	have	100	percent	determinism.	At	most,
they	strongly	tip	the	scales—but	the	environment	also
has	a	huge	share	in	the	developmental	trajectory	that	a
child	will	ultimately	take.	My	colleagues	in	special
education	are	positive:	with	enough	effort,	no	dyslexia
or	dyscalculia	is	so	strong	as	to	be	beyond	the	reach	of
rehabilitation.	It	is	high	time	that	we	now	turn	to	this
second	major	player	in	brain	development:	brain
plasticity.







CHAPTER	5

Nurture’s	Share

Everybody	knows	that	the	ability	of	a	pianist	…
requires	many	years	of	mental	and	muscular
gymnastics.	To	understand	this	important
phenomenon,	it	is	necessary	to	accept	that,	in
addition	to	the	reinforcement	of	pre-established
organic	pathways,	new	pathways	are	created	by
the	ramification	and	progressive	growth	of
terminal	dendritic	and	axonal	processes.

Santiago	Ramón	y	Cajal	(1904)

I	HAVE	JUST	INSISTED	ON	THE	CONTRIBUTION	OF	NATURE	TO
THE	CONSTRUCTION	of	our	brain—the	interplay	of	genes
and	self-organization.	But,	of	course,	nurture	is	equally
important.	The	brain’s	early	organization	does	not
remain	forever	unchanged:	experience	refines	and
enriches	it.	This	is	the	other	side	of	the	coin:	How	does
learning	change	the	circuits	in	a	child’s	brain?	To
understand	this,	we	have	to	rewind	the	clock	a	century,
back	to	the	fundamental	discoveries	of	the	great
Spanish	anatomist	Santiago	Ramón	y	Cajal	(1852–1934).



Cajal	is	one	of	the	heroes	of	neuroscience.	With	his
microscope	in	hand,	he	was	the	first	to	map	the	micro-
organization	of	the	brain.	A	genius	draftsman,	he
produced	realistic	yet	simplified	drawings	of	neural
circuits,	true	masterpieces	that	figure	among	the	major
works	of	scientific	illustration.	But	above	all,	he	was	able
to	move	from	observation	to	interpretation	and	from
anatomy	to	function	with	impressive	judgment.
Although	his	microscope	showed	him	only	the
postmortem	anatomy	of	neurons	and	their	circuits,	he
nevertheless	managed	to	draw	bold	and	accurate
inferences	about	the	way	they	function.
Cajal’s	greatest	discovery,	for	which	he	earned	a

Nobel	Prize	in	1906,	was	that	the	brain	is	made	up	of
distinct	nerve	cells	(neurons)	and	not	a	continuous
network,	a	reticulum,	as	was	previously	thought.	He	also
realized	that,	unlike	most	other	cells—such	as	red	blood
cells,	which	are	roughly	round	and	compact—neurons
assume	incredibly	complex	shapes.	Each	neuron	has	a
huge	tree	composed	of	several	thousand	branches,
each	one	smaller	than	the	next,	called	“dendrites”
(dendron	means	“tree”	in	Greek).	Populations	of
neurons	assemble	to	form	an	inextricable	forest	of
neuronal	arborizations.
This	complexity	did	not	discourage	our	Spanish

neuroscientist.	In	diagrams	that	have	remained	famous
in	the	history	of	neuroscience,	and	which	depicted	the



detailed	anatomy	of	the	cortex	and	hippocampus,	Cajal
added	something	eminently	simple	yet	luminous	and	of
great	theoretical	significance:	arrows!	Cajal’s	arrows
indicate	the	direction	in	which	nerve	impulses	flow:
from	the	dendrites	to	the	cell	body	of	the	neuron	and,
finally,	along	the	axon.	It	was	a	bold	speculation,	but	it
turned	out	to	be	right.	Cajal	understood	that	the	shape
of	neurons	corresponds	to	their	function:	with	its
dendritic	tree,	a	neuron	collects	information	from	other
cells,	and	all	those	messages	converge	in	the	cell’s
body,	where	the	neuron	compiles	them	to	send	out
only	a	single	message.	That	message,	called	the	“action
potential”	or	“spike,”	is	then	transferred	along	the
axon,	a	long	ivy-like	liana	that	reaches	out	to	thousands
of	other	neurons,	sometimes	several	centimeters	away.
Cajal	was	able	to	infer	another	point	of	utmost

importance:	that	neurons	communicate	with	one
another	through	synapses.	He	was	the	first	to
understand	that	each	neuron	is	a	distinct	cell—but	his
microscope	also	revealed	that	these	cells	come	into
contact	at	certain	points.	These	junction	zones	are	what
we	now	call	“synapses”	(Cajal	made	the	discovery,	but
the	name	was	coined	in	1897	by	the	great	British
physiologist	Charles	Sherrington	[1857–1952]).	Each
synapse	is	the	meeting	point	of	two	neurons	or,	more
precisely,	the	place	where	the	axon	of	one	neuron
meets	the	dendrite	of	another	neuron.	A	“presynaptic”



neuron	sends	its	axon	far	away	until	it	meets	the
dendrite	of	a	second,	“postsynaptic”	neuron	and
connects	to	it.



Neurons,	synapses,	and	the	microcircuits	that	they	form	are	the
material	hardware	of	brain	plasticity:	they	adjust	each	time	we
learn.	Each	neuron	is	a	distinct	cell	with	“trees,”	called



“dendrites”	(top	left),	that	collect	information	from	other
neurons,	and	an	axon	(bottom	left)	that	sends	messages	to	other
neurons.	A	microscope	easily	resolves	the	dendritic	spines,	which



What	happens	at	a	synapse?	Another	Nobel	Prize
winner,	the	neurophysiologist	Thomas	Südhof,	devoted
all	his	research	to	this	question,	and	he	concluded	that
synapses	are	the	computing	units	of	the	nervous	system
—genuine	nanoprocessors	of	the	brain.	Keep	in	mind
that	our	brain	contains	about	a	thousand	trillion
synapses.	The	complexity	of	such	machinery	is	truly
unequalled.	Here,	I	can	summarize	only	its	simplest
features.	The	message	that	travels	in	the	axon	is
electrical,	but	most	synapses	transform	it	into	a
chemical	one.	The	end	of	the	axon,	the	“terminal
button”	near	the	synapse,	contains	vesicles,	tiny
pockets	filled	with	molecules	called	“neurotransmitters”
(glutamate,	for	example).	When	the	electrical	signal
reaches	the	terminal	button	of	an	axon,	the	vesicles
open,	and	the	molecules	flow	into	the	synaptic	space
that	separates	the	two	neurons.	This	is	why	we	call
these	molecules	neurotransmitters:	they	transmit	a
message	from	one	neuron	to	the	next.	A	moment	after
they	are	released	from	the	presynaptic	terminal,	the
molecules	attach	themselves	to	the	membrane	of	the
second,	postsynaptic	neuron,	at	particular	points	called
“receptors.”	Neurotransmitters	are	to	receptors	like
keys	are	to	locks:	they	literally	open	doors	in	the
membrane	of	the	postsynaptic	neuron.	Ions,	positively
or	negatively	charged	atoms,	pour	into	those	open



channels	and	generate	an	electric	current	within	the
postsynaptic	neuron.	The	cycle	is	complete:	the
message	went	from	electrical	to	chemical,	then	from
chemical	back	to	electrical,	and	in	the	process,	it
crossed	the	space	between	the	two	neurons.
What	does	this	have	to	do	with	learning?	Well,	our

synapses	are	constantly	changing,	throughout	our	lives,
and	these	changes	reflect	what	we	learn.1 	Each
synapse	is	a	small	chemical	plant,	and	many	elements
of	this	plant	can	change	in	the	course	of	learning:	the
number	of	vesicles,	their	size,	the	number	of	receptors,
their	efficiency,	and	even	the	size	and	shape	of	the
synapse	itself	….	All	these	parameters	affect	the
strength	with	which	the	presynaptic	electrical	message
will	be	transmitted	to	the	second,	postsynaptic	neuron
—and	they	provide	useful	storage	space	for	learned
information.
Moreover,	these	changes	in	synaptic	strength	do	not

happen	at	random:	they	tend	to	stabilize	the	activity	of
neurons,	by	reinforcing	their	ability	to	excite	one
another	if	they	have	already	done	so	in	the	past.	The
basic	rule	is	so	simple	that	it	was	already	hypothesized
in	1949	by	psychologist	Donald	Hebb	(1904–85).	It	can
be	summed	up	in	a	simple	formula:	neurons	that	fire
together,	wire	together.	When	two	neurons	are
activated	at	the	same	time	or	in	short	succession,	their
connection	strengthens.	More	precisely,	if	the	emitting



presynaptic	neuron	fires	and	the	postsynaptic	neuron
fires	a	few	milliseconds	later,	then	the	synapse	is
strengthened:	in	the	future,	transmission	between	these
two	neurons	will	be	even	more	efficient.	If,	on	the	other
hand,	the	synapse	fails	to	make	itself	heard,	so	that	the
postsynaptic	neuron	fails	to	fire,	then	the	synapse
weakens.
We	now	understand	why	this	phenomenon	stabilizes

neuronal	activity:	it	strengthens	circuits	that	have
worked	well	in	the	past.	Synaptic	changes	that	follow
Hebb’s	rule	enhance	the	probability	that	the	same	type
of	activity	happens	again.	Synaptic	plasticity	enables
vast	neuronal	tapestries,	each	composed	of	millions	of
neurons,	to	follow	one	another	in	a	precise	and
reproducible	order.	A	mouse	that	traverses	a	maze
along	the	optimal	path,	a	violinist	who	pours	a	fountain
of	notes	out	of	her	fingers,	or	a	child	who	successfully
recites	a	poem	…	each	of	these	scenarios	awakens	a
neural	symphony	in	which	every	move,	note,	or	word	is
recorded	by	hundreds	of	millions	of	synapses.
Of	course,	the	brain	does	not	keep	a	record	of	every

event	of	our	lives.	Only	the	moments	that	it	considers
the	most	important	get	imprinted	in	our	synapses.	To
this	aim,	synaptic	plasticity	is	modulated	by	vast
networks	of	neurotransmitters,	particularly
acetylcholine,	dopamine,	and	serotonin,	that	signal
which	episodes	are	important	enough	to	remember.



Dopamine,	for	example,	is	the	neurotransmitter
associated	with	reward:	food,	sex,	drugs	…	and	in	case
you	were	wondering:	yes,	even	rock	’n’	roll!2 	The
dopamine	circuit	flags	everything	we	love,	every
stimulus	we	are	“addicted	to,”	and	signals	to	the	rest	of
the	brain	that	what	we	experience	is	positive	and	better
than	we	expected.	Acetylcholine,	on	the	other	hand,
attaches	itself	more	generally	to	all	important	moments.
Its	effects	are	massive.	For	example,	you	are	able	to
remember	exquisite	details	of	what	you	were	doing	on
September	11,	2001,	when	you	learned	about	the
World	Trade	Center	attack,	because	on	that	day,	a
hurricane	of	neurotransmitters	rushed	through	your
brain	circuits,	causing	your	synapses	to	be	massively
altered.	One	circuit	is	particularly	crucial:	the	amygdala,
a	subcortical	group	of	neurons	triggered	primarily	by
strong	emotions,	sends	signals	to	the	nearby
hippocampus,	which	stores	the	major	episodes	of	our
existence.	In	this	manner,	synaptic	modifications
primarily	highlight	the	facts	of	our	lives	that	the
emotional	circuits	of	our	brain	consider	the	most
significant.
The	ability	of	synapses	to	modify	themselves

according	to	the	activity	of	their	pre-	and	postsynaptic
neurons	was	initially	discovered	under	artificial
conditions.	Experimenters	had	to	tetanize	the	neurons
by	stimulating	them	at	a	frantic	rate	with	a	strong



electric	current	before	the	strength	of	their	synapses
changed.	After	this	traumatic	experience,	the	synapses
remained	modified	for	several	hours,	a	phenomenon
called	“long-term	potentiation,”	which	seemed	ideal	to
maintain	memories	in	the	long	term.3 	But	was	this
mechanism	genuinely	used	by	the	brain	to	store
information	under	normal	conditions?	The	first	evidence
came	from	a	marine	animal,	Aplysia	californica,	a	sea
slug	with	gigantic	neurons.	This	creature	is	not
endowed	with	a	brain	in	the	typical	sense	of	the	word,
but	rather	has	large	bundles	of	nerve	cells,	called
“ganglia.”	In	these	structures,	Nobel	Prize	winner	Eric
Kandel	identified	a	whole	cascade	of	synaptic	and
molecular	modifications	when	the	animal	became
conditioned	to	expect	food,	a	bit	like	Pavlov’s	dog.4

Soon,	as	synapse	recording	and	visualization
techniques	evolved,	evidence	accumulated	in	support
of	the	role	of	synaptic	plasticity	in	learning.	Synaptic
changes	occur	precisely	in	the	circuits	that	the	animal
uses	to	learn.	When	a	mouse	learns	to	avoid	a	place
where	it	received	a	small	electrical	shock,	the	synapses
of	the	hippocampus,	the	region	responsible	for	spatial
and	episodic	memory,	change:5 	the	connections
between	the	hippocampus	and	the	amygdala	hardwire
such	a	traumatic	experience.	When	the	mouse	becomes
terrified	by	a	sound,	the	synapses	that	connect	the
amygdala	to	the	auditory	cortex	undergo	a	similar



change.6 	Furthermore,	these	changes	do	not	simply
co-occur	during	learning:	they	actually	seem	to	play	a
causal	role	in	it.	The	proof	is	that	if,	in	the	minutes
following	a	traumatic	event,	we	interfere	with	the
molecular	mechanisms	that	allow	the	synapses	to
undergo	learning-related	changes,	the	animal	ends	up
not	remembering	anything.7

THE	PORTRAIT	OF	A	MEMORY

What	is	a	memory?	And	what	is	its	physical	foundation
in	the	brain?	Most	researchers	agree	on	the	following
explanation,	which	distinguishes	between	periods	of
encoding	and	remembering.8

Let’s	start	with	encoding.	Each	of	our	perceptions,
actions,	and	thoughts	relies	on	the	activity	of	a	specific
subset	of	neurons	(while	others	remain	inactive	or	even
inhibited).	The	identity	of	these	active	neurons,
distributed	in	many	regions	of	the	brain,	defines	the
content	of	our	thoughts.	When	I	see,	let’s	say,	Donald
Trump	in	the	Oval	Office,	some	neurons	respond	to	his
face	(in	the	inferior	temporal	region),	others	to	his	voice
(in	the	superior	temporal	region),	others	to	the	layout	of
his	office	(in	the	parahippocampal	region),	and	so	on
and	so	forth.	Single	neurons	may	provide	some
information,	but	the	overall	memory	is	always	encoded
by	several	interconnected	groups	of	neurons.	If	I	run
into	a	colleague	at	the	office,	the	cascade	of	activity	of



a	slightly	different	group	of	neurons	will	allow	me,	in
principle,	to	avoid	confusing	her	with	the	president,	and
her	office	with	the	famous	oval	room.	Distinct	groups	of
neurons	code	for	different	faces	and	places—and
because	these	neurons	are	tightly	interconnected,	the
mere	sight	of	the	White	House	may	evoke	Trump’s
face,	while	I	may	have	trouble	recognizing	my	colleague
out	of	context,	for	instance,	if	I	run	into	her	at	the	gym.
Let	us	now	suppose	that	upon	seeing	the	president	in

the	Oval	Office,	my	emotional	systems	judge	this
experience	important	enough	to	be	stored	in	memory.
How	does	my	brain	go	about	recording	it?	To	cement
the	event,	the	neurons	that	were	recently	activated
undergo	major	physical	changes.	They	modify	the
strength	of	their	interconnections,	thus	increasing	the
group	support	and	making	it	more	likely	that	this	set	of
neurons	will	fire	in	the	future.	Some	synapses	become
physically	larger	and	may	even	get	duplicated.	The
target	neurons	sometimes	grow	new	spines,	terminal
boutons,	or	dendrites.	All	these	anatomical
modifications	imply	the	expression	of	new	genes,	over
the	course	of	several	hours	or	even	days.	These
changes	are	the	physical	basis	of	learning:	collectively,
they	form	a	substrate	for	memory.
Once	a	synaptic	memory	is	formed,	the	neurons	can

now	rest:	when	they	stop	firing,	the	memory	remains
dormant,	unconscious	but	inscribed	in	the	very	anatomy



of	my	neuronal	circuits.	In	the	future,	thanks	to	those
connections,	an	external	clue	(say,	a	photo	of	the
presidential	office)	may	suffice	to	produce	a	cascade	of
neuronal	activity	in	the	original	circuit.	This	cascade	will
restore	a	pattern	of	neural	discharges	similar	to	the
moment	the	memory	was	made,	ultimately	allowing	me
to	recognize	Donald	Trump’s	face.	According	to	this
theory,	each	restored	memory	is	a	reconstruction:
remembering	is	attempting	to	play	back	the	very	same
neuronal	firing	pattern	that	occurred	in	the	same	brain
circuits	during	a	past	experience.
Memory	therefore	cannot	be	ascribed	to	a	single

region	of	the	brain—it	is	distributed	in	most,	if	not	all,
brain	circuits,	because	each	of	them	is	capable	of
changing	its	synapses	in	response	to	a	frequent	pattern
of	neural	activity.	But	not	all	circuits	play	the	same	role.
Even	if	the	terminology	remains	vague	and	continues	to
evolve,	researchers	distinguish	between	at	least	four
kinds	of	memories.

Working	memory	retains	a	mental	representation
in	active	form	for	a	few	seconds.	It	mainly	relies
on	the	vigorous	firing	of	many	neurons	in	the
parietal	and	prefrontal	cortices,	which	in	turn
support	neurons	in	other,	more	peripheral
regions.9 	Working	memory	is	typically	what
allows	us	to	keep	a	phone	number	in	mind:



during	the	time	it	takes	us	to	type	it	into	our
smartphone,	certain	neurons	support	one
another	and	thus	keep	the	information	in	an
active	state.	This	type	of	memory	is	primarily
based	on	the	maintenance	of	a	sustained	pattern
of	activity—although	it	was	recently	discovered
that	it	probably	also	involves	short-lived	synaptic
changes,10 	allowing	the	neurons	to	go	briefly
dormant	and	quickly	return	to	their	active	state.
At	any	rate,	working	memory	never	lasts	more
than	a	few	seconds:	as	soon	as	we	get	distracted
by	something	else,	the	assembly	of	active
neurons	fades	away.	It	is	the	brain’s	short-term
buffer,	keeping	in	mind	only	the	hottest,	most
recent	information.

Episodic	memory:	The	hippocampus,	a	structure
located	in	the	depths	of	the	cerebral
hemispheres	below	the	cortex,	records	the
unfolding	episodes	of	our	daily	lives.	Neurons	in
the	hippocampus	seem	to	memorize	the	context
of	each	event:	they	encode	where,	when,	how,
and	with	whom	things	happened.	They	store
each	episode	through	synaptic	changes,	so	we
can	remember	it	later.	The	famous	patient	H.M.,
whose	hippocampi	in	both	hemispheres	had
been	obliterated	by	surgery,	could	no	longer
remember	anything:	he	lived	in	an	eternal



present,	unable	to	add	the	slightest	new	memory
to	his	mental	biography.	Recent	data	suggest
that	the	hippocampus	is	involved	in	all	kinds	of
rapid	learning.	As	long	as	the	learned	information
is	unique,	whether	it	is	a	specific	event	or	a	new
discovery	worthy	of	interest,	the	neurons	in	the
hippocampus	assign	it	a	specific	firing
sequence.11

Semantic	memory:	Memories	do	not	seem	to
stay	in	the	hippocampus	forever.	At	night,	the
brain	plays	them	back	and	moves	them	to	a	new
location	within	the	cortex.	There,	they	are
transformed	into	permanent	knowledge:	our
brain	extracts	the	information	present	in	the
experiences	we	lived	through,	generalizes	it,	and
integrates	it	into	our	vast	library	of	knowledge	of
the	world.	After	a	few	days,	we	can	still
remember	the	name	of	the	president,	without
having	the	slightest	memory	of	where	or	when
we	first	heard	it:	from	episodic,	the	memory	has
now	become	semantic.	What	was	initially	just	a
single	episode	was	transformed	into	long-lasting
knowledge,	and	its	neural	code	moved	from	the
hippocampus	to	the	relevant	cortical	circuits.12

Procedural	memory:	When	we	repeat	the	same
activity	over	and	over	again	(tying	our	shoes,



reciting	a	poem,	calculating,	juggling,	playing	the
violin,	cycling	…),	neurons	in	the	cortex	and	other
subcortical	circuits	eventually	modify	themselves
so	that	information	flows	better	in	the	future.
Neuronal	firing	becomes	more	efficient	and
reproducible,	pruned	of	any	parasitic	activity,
unfolding	unerringly	and	as	precisely	as
clockwork.	This	is	procedural	memory:	the
compact,	unconscious	recording	of	patterns	of
routine	activity.	Here,	the	hippocampus	does	not
intervene:	through	practice,	the	memory	gets
stored	in	an	implicit	storage	space,	primarily
involving	a	subcortical	set	of	neural	circuits	called
the	“basal	ganglia.”	This	is	why	the	patient	H.M.,
even	without	any	conscious,	episodic,
hippocampus-related	memory,	could	still	learn
new	procedures.	The	researchers	even	taught
him	to	write	backwards	while	looking	at	his	hand
in	a	mirror.	Having	no	memory	of	the	numerous
times	he	had	practiced	this	before,	he	was
flabbergasted	to	find	out	how	good	he	was	at
what	he	believed	to	be	a	completely	new	trick!

TRUE	SYNAPSES	AND	FALSE	MEMORIES

In	the	unforgettable	movie	Eternal	Sunshine	of	the
Spotless	Mind	(2004),	French	director	Michel	Gondry



imagines	a	company	that	specializes	in	selectively
erasing	memories	from	people’s	brains.	Wouldn’t	it	be
useful	to	delete	the	memories	that	poison	our	lives,
such	as	those	that	cause	post-traumatic	stress	in	war
veterans?	Or,	on	the	contrary,	could	we	paint	the
illusory	canvas	of	a	false	memory?
Neuroscientists’	mastery	of	the	circuits	involved	in

memory	is	such	that	we	are	no	longer	that	far	away
from	Michel	Gondry’s	dream.	Both	manipulations	have
already	been	performed	in	mice	by	the	team	of	another
Nobel	Prize	winner,	professor	Susumu	Tonegawa.	He
first	placed	a	mouse	in	a	room	and	gave	it	minor
electric	shocks.	The	mouse	then	avoided	the	room
where	this	unpleasant	event	took	place,	indicating	that
this	episode	was	ingrained	into	its	memory.	Indeed,
Tonegawa’s	colleagues	managed	to	visualize	it.	Using	a
sophisticated	two-photon	microscope,	they	could	track
which	neurons	were	active	at	each	instant,	and	they	saw
that,	in	the	hippocampus,	different	groups	of	neurons
were	activated	for	room	A,	which	had	been	associated
with	the	electric	shock,	and	room	B,	where	nothing	had
happened.
Then	the	researchers	tested	whether	they	could	play

around	with	those	episodic	memories.	While	the	animal
was	physically	located	in	room	A,	they	again	gave	it
small	electric	shocks,	but	this	time	they	artificially
activated	the	population	of	neurons	that	encoded	room



B.	This	artificial	conditioning	was	effective:	afterwards,
when	the	mouse	went	back	to	room	B,	it	became
alarmed	and	froze	in	fear.	The	bad	memory	was	now
attached	to	room	B,	where	nothing	had	ever
happened.13 	Reactivating	a	meaningful	group	of
neurons	had	sufficed	to	awaken	a	memory	and	tie	it
with	new	information.
Tonegawa’s	team	then	turned	the	bad	memory	into	a

good	one.	Could	the	traumatic	memory	be	erased?
Yes.	By	reactivating	the	same	room	B	neurons	when	the
mice	were	put	in	the	presence	of	partners	of	the
opposite	sex—a	guaranteed	good	moment—the
researchers	succeeded	in	erasing	the	association	with
the	electric	shock.	The	mice,	far	from	avoiding	the
cursed	room	B,	began	to	explore	it	frantically	as	if	they
were	searching	for	the	erotic	partners	that	they
remembered.14

Another	group	of	researchers	adopted	a	slightly
different	strategy:	they	reawakened	the	initial	group	of
neurons	while,	at	the	same	time,	weakening	the
synapses	that	linked	them.	Again,	in	the	days	that
followed,	the	mouse	no	longer	showed	the	slightest
memory	of	the	initial	trauma.15

In	the	same	line	of	thought,	French	researcher	Karim
Benchenane	succeeded	in	implanting	a	new	memory	in
the	mouse’s	brain	during	its	sleep.16 	Whenever	an
animal	falls	asleep,	neurons	in	its	hippocampus



spontaneously	reactivate	the	memories	of	the	previous
day,	especially	the	places	where	the	animal	went	(we
will	return	to	this	in	more	detail	in	Chapter	10).	Taking
advantage	of	this	fact,	Benchenane	waited	for	the
sleeping	mouse’s	brain	to	reactivate	the	neurons
associated	with	a	particular	place	in	its	enclosure—and
then	gave	the	animal	a	small	injection	of	dopamine,	the
neurotransmitter	of	pleasure.	Lo	and	behold,	as	soon	as
the	mouse	woke	up,	it	scurried	as	fast	as	it	could	toward
this	location!	What	was	initially	a	neutral	location	had
acquired,	during	the	night,	a	very	special	place	in
memory,	as	addictive	as	the	sweetness	of	Provence	or
the	first	place	we	fell	in	love.
Closer	to	us	humans,	some	animal	experiments	have

begun	mimicking	the	effects	of	schooling	on	the	brain.
What	happens	when	a	monkey	learns	letters,	numbers,
or	how	to	use	tools?17 	Japanese	researcher	Atsushi
Iriki	showed	that	a	monkey	could	learn	to	use	a	rake	to
collect	pieces	of	food	that	were	placed	too	far	away	to
be	grabbed	by	hand.	After	a	few	thousand	tests,	the
animal	became	as	quick	as	an	experienced	casino
croupier:	it	took	him	only	a	few	tenths	of	a	second	to
rake	in	each	food	morsel,	with	a	flick	of	the	wrist.	The
monkey	even	figured	out	how	to	use	a	medium-size
rake	to	pull	a	second,	longer	rake	to	him,	in	order	to
reach	food	placed	at	a	much	farther	distance!	This	type
of	tool	learning	triggered	a	whole	cascade	of	changes



in	the	brain.	Energy	consumption	increased	in	a	specific
area	of	the	cortex,	the	anterior	parietal	region—the
same	area	that	humans	use	to	control	hand
movements,	write,	grab	an	object,	or	use	a	hammer	or
pliers.	New	genes	were	expressed,	synapses
blossomed,	dendritic	and	axonal	trees	multiplied—and
all	these	additional	connections	resulted	in	a	23	percent
increase	in	cortex	thickness	in	this	expert	monkey.
Whole	bundles	of	connections	also	underwent	dramatic
alterations:	axons	coming	from	a	distant	region,	at	the
junction	with	the	temporal	cortex,	grew	several
millimeters	and	invaded	a	part	of	the	anterior	parietal
region	which	previously	had	no	connections	to	these
neurons.
These	examples	illustrate	the	degree	to	which	the

effects	of	brain	plasticity	extends	in	time	and	space.
Let’s	review	the	main	points	together.	A	set	of	neurons
which	codes	for	an	event	or	concept	that	we	wish	to
memorize	is	activated	in	our	brain.	How	is	this	memory
saved?	In	the	beginning	is	the	synapse,	the	microscopic
point	of	contact	between	two	neurons.	Its	strength	is
increased	when	the	neurons	it	links	are	jointly	activated
in	short	succession—this	is	Hebb’s	famous	rule:	neurons
that	fire	together,	wire	together.	A	synapse	that	gets
stronger	is	like	a	factory	that	increases	its	productivity:	it
recruits	more	neurotransmitters	on	the	presynaptic	side



and	more	receptor	molecules	on	the	postsynaptic	side.
It	also	increases	in	size	to	accommodate	them.
As	a	neuron	learns,	its	very	shape	changes	too.	A

mushroom-like	structure	called	a	“dendritic	spine”
forms	at	the	place	on	the	dendrite	where	the	synapse
lands.	If	necessary,	a	second	synapse	emerges	to
double	the	first.	Other	synapses	that	land	on	the	same
neuron	are	also	strengthened.18

Thus,	when	learning	is	prolonged,	the	very	anatomy
of	the	brain	ends	up	changing.	With	recent	advances	in
microscopy—in	particular,	the	revolution	brought	on	by
two-photon	microscopes,	based	on	lasers	and	quantum
physics—synaptic	and	axonal	buttons	can	now	be
directly	seen	growing	with	each	learning	episode,	just
like	a	tree	in	springtime.	When	accumulated,	the
dendritic	and	axonal	changes	can	be	substantial,	on	the
order	of	millimeters,	and	they	begin	to	become
detectable	in	humans	through	MRI.	Learning	to	play
music,19 	read,20 	juggle,21 	or	even	drive	a	taxi	in	a
big	city22 	results	in	detectable	improvements	in	the
thickness	of	the	cortex	and	the	strength	of	the
connections	that	link	cortical	regions:	the	highways	of
the	brain	improve	the	more	we	use	them.
Synapses	are	the	epitome	of	learning,	but	not	the

only	mechanism	of	change	in	the	brain.	When	we	learn,
the	explosion	of	new	synapses	often	forces	the	neurons
to	also	grow	additional	branches,	both	on	axons	and	on



dendrites.	Far	away	from	the	synapse,	the	useful	axons
surround	themselves	with	a	sheath	of	insulation—
myelin,	similar	to	the	adhesive	tape	that	is	wrapped
around	electrical	wires	to	insulate	them.	The	more	an
axon	is	used,	the	more	layers	this	sheath	develops,	thus
insulating	it	better	and	better,	allowing	it	to	transmit
information	at	a	higher	speed.
Neurons	are	not	even	the	sole	cellular	players	of	the

learning	game.	As	learning	progresses,	their	whole
environment	also	changes,	including	the	surrounding
glial	cells,	which	feed	and	heal	them,	and	even	the
vascular	network	of	veins	and	arteries	that	provide	them
with	oxygen,	glucose,	and	nutrients.	At	this	stage,	an
entire	neural	circuit	and	its	support	structure	have
changed.
Some	researchers	challenge	the	dogma	that	synapses

are	the	indispensable	actor	of	all	learning.	Recent	data
suggest	that	Purkinje	cells,	a	special	type	of	neuron	in
the	cerebellum,	can	memorize	time	intervals,	and	that
synapses	play	no	role	in	this	learning	process:	the
mechanism	seems	to	be	purely	internal	to	the	cell.23 	It
is	quite	possible	that	the	dimension	of	time,	which	is	a
specialty	of	the	cerebellum,	is	stored	in	memory	using	a
different	evolutionary	trick,	one	which	is	not	based	on
synapses.	Each	cerebellar	neuron,	all	by	itself,	seems	to
be	able	to	store	several	time	intervals,	perhaps	through
stable	chemical	changes	in	its	DNA.



Another	frontier	of	research	consists	of	clarifying	how
such	learning-induced	changes,	whether	synaptic	or
not,	can	implement	the	most	elaborate	types	of
learning	that	the	human	brain	is	capable	of,	based	on
the	“language	of	thought”	and	the	fast	recombination
of	existing	concepts.	As	we	have	seen,	conventional
models	of	artificial	neural	networks	provide	a
reasonably	satisfying	explanation	for	how	millions	of
changing	synapses	allow	us	to	learn	to	recognize	a
number,	an	object,	or	a	face.	However,	there	is	no	truly
satisfactory	model	of	how	synaptic	changes	in	neural
networks	underlie	language	acquisition	or	mathematical
rules.	Moving	from	the	domain	of	synapses	to	the
symbolic	rules	that	we	learn	in	math	class	remains	a
challenge	today.	Let	us	keep	an	open	mind,	because
we	are	far	from	fully	understanding	all	the	biological
codes	by	which	our	brain	stores	our	memories.

NUTRITION	AS	A	KEY	ELEMENT	OF	LEARNING

What	is	certain	is	that	when	we	learn,	massive	biological
changes	occur:	not	only	do	neurons	undergo	change	in
their	scaffolding	of	dendrites	and	axons,	but	the
surrounding	glial	cells	do	too.	All	these	transformations
take	time.	Each	learning	experience	requires	a	cascade
of	biological	changes,	which	can	spread	over	several
days.	Many	genes	that	specialize	in	plasticity	must	be
expressed,	so	that	the	cells	produce	the	necessary



proteins	and	membranes	to	lay	down	new	synapses,
dendrites,	and	axons.	This	process	absorbs	a	lot	of
energy:	a	young	child’s	brain	consumes	up	to	50
percent	of	the	body’s	energy	balance.	Glucose,	oxygen,
vitamins,	iron,	iodine,	fatty	acids	…	a	great	variety	of
nutriments	is	essential	for	successful	brain	growth.	The
brain	does	not	feed	just	on	intellectual	stimulation.	To
make	and	break	a	few	million	synapses	per	second,	it
requires	a	balanced	diet,	oxygenation,	and	physical
exercise.24

A	sad	episode	illustrates	the	extreme	sensitivity	of	the
developing	brain	to	proper	nutrition.	In	November
2003,	children	in	Israel	suddenly	became	afflicted	by	an
unknown	sickness.25 	Overnight,	dozens	of	babies
flooded	into	pediatric	hospitals	across	the	country.
They	presented	severe	neurological	symptoms:
lethargy,	vomiting,	vision	impairments,	and	vigilance
problems,	sometimes	leading	to	coma	or,	for	two	of
them,	to	death.	A	race	against	time	began:	What	was
this	new	disease,	and	what	caused	its	abrupt
emergence?
The	investigation	eventually	traced	it	back	to

nutrition.	All	the	sick	babies	had	been	bottle-fed	with
the	same	soy-based	milk	powder.	The	analysis	of	its
formula	confirmed	the	worst	of	fears:	according	to	the
label,	the	milk	should	have	contained	385	milligrams	of
thiamine,	better	known	as	vitamin	B1.	In	reality,	there



was	no	trace	of	it.	When	contacted,	the	manufacturer
admitted	that	he	had	altered	the	composition	of	the
milk	at	the	beginning	of	2003:	for	economic	reasons,	he
had	stopped	adding	thiamine.	This	vitamin,	however,	is
an	essential	nutrient	for	the	brain.	Even	worse,	the	body
does	not	store	thiamine,	so	its	absence	from	one’s	diet
quickly	leads	to	a	serious	deficiency.
Neurologists	already	knew	that	thiamine	deficiency	in

adults	causes	a	severe	neurological	disorder,	Wernicke-
Korsakoff	syndrome,	most	often	seen	in	heavy	drinkers.
In	the	acute	phase,	this	deficiency	induces	Wernicke’s
encephalopathy,	which	can	be	fatal.	Mental	confusion,
eye	movement	disorders,	inability	to	coordinate
movements,	and	deficient	alertness,	sometimes	leading
to	coma	and	death	…	its	symptoms	resembled	those	of
the	babies	in	Israel	in	every	way.
The	ultimate	proof	came	from	therapeutic

intervention.	As	soon	as	the	essential	vitamin	B1	was
restored	to	the	children’s	diet,	their	condition	improved
in	a	few	days,	and	they	were	able	to	return	home.	It	is
estimated	that	between	six	hundred	and	one	thousand
Israeli	babies	were	deprived	of	thiamine	for	two	to
three	weeks	during	the	first	months	of	their	lives.	The
restoration	of	a	balanced	diet	clearly	saved	them.
However,	years	later,	they	exhibited	major	language
impairments.	Israeli	psychologist	Naama	Friedmann
tested	about	sixty	of	them	when	they	were	six	or	seven



years	old.	The	majority	suffered	from	huge	deficits	in
language	comprehension	and	production.	Their
grammar	was	particularly	abnormal—after	reading	or
hearing	a	sentence,	they	had	trouble	figuring	out	who
did	what	to	whom.	Even	the	simple	task	of	naming	a
picture,	like	that	of	a	sheep,	was	difficult	for	some	of
them.	However,	their	conceptual	processing	seemed
intact:	they	knew	how	to	associate,	for	example,	the
image	of	a	ball	of	wool	with	that	of	a	sheep	rather	than
a	lion.	And	in	all	other	respects,	in	particular	with	regard
to	intelligence	(the	famous	IQ	test),	they	appeared
normal.
This	sad	story	illustrates	the	limits	of	brain	plasticity.

Learning	a	language	is	obviously	based	on	the
immense	plasticity	of	the	infant’s	brain.	Any	baby	is
capable	of	learning	any	language	of	the	world,	from	the
tones	in	Chinese	to	the	clicks	in	Bantu	of	South	Africa,
because	its	brain	changes	adequately	in	response	to
immersion	in	a	particular	community.	However,	this
plasticity	is	neither	infinite	nor	magical:	it	is	a	strictly
material	process	that	requires	specific	nutritional	and
energetic	inputs,	and	even	a	few	weeks	of	deprivation
can	lead	to	permanent	deficits.	And	because	the
organization	of	the	brain	is	highly	modular,	these
deficits	may	be	restricted	to	a	specific	cognitive
domain,	such	as	grammar	or	vocabulary.	The	pediatric
literature	is	full	of	similar	examples.	I	could	have



mentioned,	for	instance,	fetal	alcohol	syndrome,	which
is	caused	by	exposure	of	the	fetus	to	alcohol	ingested
by	the	mother.	Alcohol	is	a	teratogen,	a	substance	that
causes	embryonic	malformations	of	the	body	and	brain:
it	is	a	true	poison	for	the	developing	nervous	system,
one	that	should	clearly	be	avoided	throughout
pregnancy.	For	dendritic	trees	to	thrive,	the	garden	of
the	brain	must	be	provided	with	all	the	nutrients	it
needs.

THE	POWERS	AND	LIMITS	OF	SYNAPTIC	PLASTICITY

In	a	well-fed	brain,	how	far	can	plasticity	go?	Can	it
completely	rewire	the	brain?	Can	brain	anatomy
dramatically	change	according	to	experience?	The
answer	is	no.	Plasticity	is	an	adjustment	variable,
fundamental	for	learning	but	restricted	and	confined	by
all	kinds	of	genetic	constraints	that	make	us	what	we
are:	the	conjunction	of	a	fixed	genome	and	unique
experiences.
It	is	time	I	tell	you	more	about	Nico,	the	young	artist

whose	art	I	introduced	you	to	in	the	first	chapter	(see
figure	1	in	the	color	insert).	Nico	creates	his	splendid
paintings	using	only	a	single	brain	hemisphere,	his	left.
At	the	age	of	three	years	and	seven	months,	he
underwent	a	surgical	procedure	called	a
“hemispherectomy”—the	quasi-complete	removal	of	a
hemisphere—to	put	an	end	to	his	devastating	epilepsy.



Supported	by	his	family,	his	doctors,	and	Harvard
School	of	Education	researcher	Antonio	Battro,	Nico
managed	to	attend	elementary	school	in	Buenos	Aires,
then	went	to	high	school	in	Madrid	until	he	was
eighteen.	Nowadays,	his	oral	and	written	language,
memory,	and	spatial	skills	are	all	excellent.	He	even	got
his	university	diploma	in	IT.	Above	all,	he	has	this
remarkable	talent	for	drawing	and	painting.
Is	this	a	good	case	of	brain	plasticity	at	work?

Undoubtedly,	considering	that	Nico’s	left	hemisphere
has	mastered	many	functions	that,	in	a	normal	person,
are	traditionally	associated	with	the	right	hemisphere.
For	instance,	Nico	manages	to	pay	attention	to	the
entirety	of	a	picture	and	can	copy	the	spatial
arrangement	of	a	drawing;	he	understands	the	irony
and	intonations	of	a	conversation,	and	can	guess	the
thoughts	of	the	people	he	speaks	to.	If	the	same	lesion
occurred	in	an	adult	brain,	these	functions	would	likely
be	irremediably	damaged.
Yet	Nico’s	plasticity	was	demonstrably	limited:	it	was

channeled	and	largely	confined	to	neuronal	circuits,
which	are	the	same	as	those	of	all	other	children.	When
we	scanned	Nico	with	a	whole	battery	of	tests,	we
found	that	he	had	managed	to	fit	all	his	learned	talents
into	his	intact	left	hemisphere	without	upheaving	its
usual	organization.	In	fact,	all	the	traditionally	right-
sided	functions	had	landed	at	left-hemisphere	locations



symmetrical	to	their	usual	positions!	For	example,	the
cortical	region	which	responds	to	faces	and	which	is
usually	located	in	the	right	temporal	lobe	was	now
located	in	the	left	hemisphere	in	Nico—but	in	a	very
precise	spot,	exactly	symmetrical	to	its	usual	site,	a
place	often	activated	(weakly)	by	faces	in	normal
children.	Thus,	while	his	brain	had	reorganized,	it
remained	submitted	to	the	strong	constraints	of	a
preexisting	organization	common	to	all	humans.	The
great	fiber	bundles	of	connections	which,	from	birth
and	even	in	utero,	run	through	all	babies’	brains	had
forced	his	learning	to	remain	within	the	narrow	limits	of
a	universal	cortical	map.
The	powers	and	the	limits	of	brain	plasticity	are	never

as	obvious	as	when	we	consider	visual	abilities.	Not
surprisingly,	Nico	is	hemianoptic,	which	means	that	his
vision	is	split	in	two:	a	right	half	where	he	sees	perfectly
(in	both	eyes),	and	a	left	half	where	he	is	totally	blind
(again	in	both	eyes).	Whenever	he	gazes	at	something,
the	right	part	appears	normal,	while	the	left	is	invisible
—he	has	to	shift	his	eyes	in	order	to	see	it.	Indeed,	due
to	the	crossing	of	the	visual	pathways,	inputs	from	the
left	side	of	the	visual	field,	which	would	normally	land	in
Nico’s	right	hemisphere,	now	fall	into	a	void	and	cannot
be	processed.	Twenty	years	of	visual	experience	have
not	allowed	Nico’s	brain	to	compensate	for	this
fundamental	wiring	problem.	The	plasticity	of	his	visual



connections	was	obviously	too	modest,	and	the
development	of	this	part	of	his	brain	froze	too	early	in
childhood	to	prevent	him	from	going	blind	in	his	left
visual	field.
Now,	let	me	tell	you	about	another	young	patient:	a

ten-year-old	girl	we	know	only	by	her	initials,	A.H.26

This	child,	like	Nico,	has	only	her	left	hemisphere,	but
unlike	him,	she	suffered	from	an	embryonic
malformation	that	caused	the	development	of	her	right
hemisphere	to	completely	stop	before	seven	weeks	of
gestation.	In	other	words,	A.	H.	spent	virtually	her	entire
life	without	a	right	hemisphere.	Did	early	plasticity
radically	change	her	brain?	No,	but	it	did	manage	to
intervene	a	little	bit	more	than	it	could	for	Nico.	Unlike
him,	she	is	able	to	see	some	light,	shape,	and	motion	in
her	left	visual	field,	the	one	that	should	have	projected
to	her	absent	right	hemisphere.	Her	vision	there	is	far
from	perfect,	but	she	does	detect	light	and	movement
in	a	region	close	to	the	center	of	her	vision.	Brain
imaging	shows	that	her	visual	brain	areas	are	partially
remapped	(see	figure	11	in	the	color	insert).	In	the	back
of	her	intact	left	hemisphere,	within	the	occipital	cortex,
which	houses	vision,	there	is	a	perfectly	normal	map	of
the	right	part	of	the	world—but	also	small	abnormal
patches	that	respond	to	the	left	part.	It	would	seem	that
axons	from	half	her	retina,	which	normally	should	have
been	blind,	were	redirected	to	the	other	side	of	the



brain.	This	is	an	extreme	case	of	prenatal	plasticity—
and	even	so,	the	reorganization	is	only	partial	and	quite
insufficient	to	restore	normal	vision.	In	the	visual
system,	genetic	constraints	dominate,	and	plasticity
acts	only	within	its	narrow	bounds.
Scientists	were	curious	to	see	how	far	back	these

genetic	limits	could	be	pushed.	One	experiment	is
particularly	famous,	in	which	MIT	neuroscientist
Mriganka	Sur	succeeded	in	transforming	the	ferret
auditory	cortex	into	a	visual	cortex.27 	To	do	so,	during
a	small	surgical	intervention	on	the	ferret	fetus,	he
severed	the	auditory	circuits	that	normally	travel	from
the	cochlea	to	the	brain	stem,	then	reach	a	precise
region	of	the	auditory	thalamus,	and	finally	enter	the
auditory	cortex.	These	ferrets	inevitably	ended	up	deaf
—but	then	a	curious	reorientation	occurred,	and	visual
fibers	began	to	invade	this	disconnected	auditory
circuit,	as	if	they	were	replacing	the	missing	auditory
inputs.	Lo	and	behold,	an	entire	area	of	the	cortex	that
should	have	been	dedicated	to	audition	now
responded	to	vision.	It	contained	a	whole	map	of
neurons	sensitive	to	light	and	to	oriented	lines,	like	in
any	visual	cortex.	The	synapses	adapted	themselves	to
this	new	configuration	and	began	to	encode	the
correlations	between	neurons	that	were	originally
destined	for	hearing	but	had	been	recycled	into	vision
processors.



Should	we	conclude	from	these	data	that	cerebral
plasticity	is	“massive”	and	that	experience	is	what
“organizes	the	cortex,”	as	the	most	ardent	blank-slate
defenders	would	proclaim?28 	That	is	not	Sur’s
conclusion	at	all.	On	the	contrary,	he	insists	that	this	is	a
pathological	situation,	and	that	reorganization	is	far
from	perfect:	in	the	auditory	cortex,	the	visual	maps	are
not	as	well	differentiated	as	they	should	be.	The	visual
cortex	is	genetically	prepared	to	support	vision.	During
normal	development,	each	cortical	region	specializes
very	early	on,	under	the	influence	of	numerous
developmental	genes.	Axons	find	their	way	along
predetermined	chemical	pathways	that	trace	out	proto-
maps	in	the	developing	brain.	Only	at	the	end	of	the
road	are	they	subjected	to	the	growing	influence	of
incoming	neuronal	activity	and	can	then	adapt	to	it.	The
neuronal	tapestry	is	fixed,	and	only	small	but	significant
stitches	can	change.
It	is	also	important	to	understand	that	when	synapses

change,	even	under	the	influence	of	neuronal	activity,	it
is	not	necessarily	the	environment	which	is	leaving	an
impression	on	the	brain.	Rather,	the	brain	can	use
synaptic	plasticity	to	self-organize:	it	first	generates
activity	patterns	purely	from	within,	in	the	absence	of
any	input	from	the	environment,	and	uses	those	activity
patterns,	in	combination	with	synaptic	plasticity,	to	wire
its	circuits.	In	utero,	even	before	they	receive	any



sensory	input,	the	brain,	the	muscles,	and	even	the
retina	already	exhibit	spontaneous	activity	(this	is	why
fetuses	move	in	the	womb).	Neurons	are	excitable	cells:
they	can	fire	off	spontaneously,	and	their	action
potentials	self-organize	into	massive	waves	that	travel
through	brain	tissue.	Even	in	the	womb,	random	waves
of	neuronal	spikes	flow	through	the	fetus’s	retinas,	and
upon	reaching	the	cortex,	although	they	do	not	carry
any	visual	information	in	the	strict	sense	of	the	term,
these	waves	help	organize	the	cortical	visual	maps.29

Thus,	synaptic	plasticity	initially	acts	without	requiring
any	interaction	with	the	outside	world.	It	is	only	during
the	third	trimester	of	gestation	that	the	line	between
nature	and	nurture	gradually	blurs	as	the	brain,	which	is
already	well	formed,	begins	to	adjust	to	both	inner	and
outer	worlds.
Even	after	birth,	random	neuronal	firing	unrelated	to

sensory	inputs	continues	to	flow	through	the	cortex.
Very	slowly,	this	endogenous	activity	evolves	under	the
influence	of	the	sensory	organs.	This	process	can	be
given	a	precise	interpretation	within	the	theoretical
framework	of	the	“Bayesian	brain.”30 	The	initial
endogenous	activity	represents	what	statisticians	call
the	prior:	the	expectations	of	the	brain,	its	evolutionary
assumptions	prior	to	any	interaction	with	the
environment.	Later,	these	assumptions	gradually	adjust
to	environmental	signals,	so	that	after	a	few	months	of



life,	spontaneous	neuronal	activity	resembles	what
statisticians	call	the	posterior:	the	brain’s	probability
distributions	have	changed	to	more	and	more	closely
reflect	real-world	statistics.	During	brain	development,
the	internal	models	that	we	carry	in	our	neuronal	circuits
get	refined	as	each	of	them	compiles	statistics	from	its
sensory	inputs.	The	final	result	is	a	compromise,	a
selection	of	the	best	internal	model	from	those	that	our
prior	organization	makes	available.

WHAT	IS	A	SENSITIVE	PERIOD?

We	have	just	seen	that	brain	plasticity	is	both	vast	and
limited.	All	bundles	of	connections	can	and	must
change	as	we	live,	mature,	and	learn.	However,	the
main	ones	are	already	in	place	from	birth	and	remain
essentially	the	same	in	all	of	us.	Everything	we	learn
results	from	small	adjustments,	mainly	at	the	level	of
microcircuits,	often	on	the	scale	of	a	few	millimeters.	As
neurons	mature	and	their	terminal	branches	grow	new
synaptic	buttons	onto	other	neurons,	the	circuits	they
form	remain	firmly	rooted	within	a	limited	genetic
envelope.	In	response	to	the	environment,	neuronal
pathways	can	change	their	local	connectivity,	their
strength,	and	also	their	myelination,	surrounding
themselves	with	an	insulating	sheath	of	myelin,	which
accelerates	their	messages	and	thus	facilitates	the



transmission	of	information	from	one	region	to	another
—yet	they	cannot	reorient	themselves	at	will.
This	spatial	constraint	on	long-distance	connectivity	is

coupled	with	a	temporal	constraint:	in	many	brain
regions,	plasticity	is	maximal	only	during	a	limited	time
interval,	which	is	called	a	“sensitive	period.”	It	opens	up
in	early	childhood,	peaks,	and	then	gradually	decreases
as	we	age.	The	entire	process	takes	several	years	and
varies	across	brain	regions:	sensory	areas	reach	their
peak	plasticity	around	the	age	of	one	or	two	years	old,
while	higher-order	regions	such	as	the	prefrontal	cortex
peak	much	later	in	childhood	or	even	early
adolescence.	What	is	certain,	however,	is	that	as	we
age,	plasticity	decreases,	and	learning,	while	not
completely	frozen,	becomes	more	and	more	difficult.31

The	reason	I	affirm	that	babies	are	real	learning
machines	is	that,	during	their	first	years,	their	brains	are
the	seat	of	an	ebullient	synaptic	plasticity.	The
dendrites	of	their	pyramidal	neurons	multiply	at	an
impressive	speed.	At	birth,	the	infant’s	cortex	looks	like
a	forest	after	a	hurricane,	sparsely	populated	by
scattered,	bare	tree	trunks.	The	first	six	months	of	life
are	literal	springtime	for	the	newborn	brain,	as	neuronal
connections	and	branches	multiply	until	they	form	an
inextricable	jungle.32

Such	a	progressive	complexification	of	neuronal	trees
could	suggest	that	the	environment	leaves	its



impression	on	the	brain	and	forces	it	to	grow	as	it
stocks	more	and	more	data.	The	reality,	however,	is
much	more	convoluted.	In	the	immature	brain,
synapses	do	not	emerge	in	direct	proportion	to	how
much	learning	occurs.	Rather,	they	are	created	in
excessive	numbers,	and	the	role	of	the	environment	is
to	keep	them	or	prune	them,	depending	on	their	utility
for	the	organism.	During	early	childhood,	the	density	of
synapses	reaches	twice	that	of	an	adult,	and	only	then
does	it	slowly	decrease.	In	each	region	of	the	cortex,
incessant	waves	of	overproduction	are	followed	by	a
selective	retraction	of	useless	synapses	or,	on	the
contrary,	a	multiplication	of	those	synapses	and
dendritic	and	axonal	branches	that	have	proven	their
worth.	Ponder	this	the	next	time	you	look	at	a	young
child:	every	second	that	goes	by,	several	million
synapses	are	created	or	eliminated	in	her	brain.	This
effervescence	largely	explains	the	existence	of	sensitive
periods.	In	early	childhood,	the	whole	dendritic	and
synaptic	foliage	is	still	highly	malleable;	the	more	the
brain	matures,	the	more	learning	is	confined	to
marginal	changes.



In	the	first	two	years	of	life,	neuronal	trees	grow	wildly	until	they
form	inextricable	bushes.	In	the	brain	of	a	two-year-old	child,	the
number	of	synapses	is	almost	double	that	of	an	adult.	In	the
course	of	development,	dendritic	trees	are	progressively
trimmed	under	the	influence	of	neuronal	activity.	Useful	synapses
are	preserved	and	multiply,	while	unnecessary	ones	are
eliminated.

Remarkably,	these	waves	of	synaptic	overproduction
and	pruning	do	not	occur	everywhere	at	the	same



time.33 	The	primary	visual	cortex,	like	other	sensory
regions,	matures	much	faster	than	higher-level	cortical
areas.	The	organizing	principle	seems	to	be	to	quickly
stabilize	the	brain’s	inputs	by	freezing	cortical
organization	in	early	sensory	areas,	while	leaving	the
high-level	areas	open	to	change	for	much	longer.	Thus,
regions	higher	up	in	the	cortical	hierarchy,	such	as	the
prefrontal	cortex,	are	the	last	to	stabilize:	they	continue
to	change	during	adolescence	and	beyond.	In	the
human	species,	the	peak	of	synaptic	overproduction
ends	around	two	years	of	age	in	the	visual	cortex,	three
or	four	years	of	age	in	the	auditory	cortex,	and	between
five	and	ten	years	of	age	in	the	prefrontal	cortex.34

Myelination,	the	wrapping	of	an	insulator	around	axons,
follows	the	same	pattern.35 	In	the	first	months	of	life,
neurons	in	sensory	areas	are	the	first	to	benefit	from	an
insulating	sheet	of	myelin.	As	a	result,	visual	information
processing	accelerates	dramatically:	the	information
transmission	delay	from	the	retina	to	the	visual	areas
drops	from	a	quarter	to	a	tenth	of	a	second	in	the	first
few	weeks	of	life.36 	This	insulation	is	much	slower	to
reach	the	fiber	bundles	that	project	to	the	frontal
cortex,	the	seat	of	abstract	thought,	attention,	and
planning.	For	years,	young	children	possess	a	hybrid
brain:	their	sensory	and	motor	circuits	are	quite	mature,
while	their	higher-level	areas	continue	to	operate	at	the
slow	speed	of	unmyelinated	circuitry.	As	a	result,	during



the	first	year	of	their	lives,	it	takes	them	up	to	four	times
longer	than	an	adult	to	become	aware	of	basic
information,	such	as	the	presence	of	a	face.37

In	sync	with	those	successive	waves	of	synaptic
overproduction	and	myelination,	the	sensitive	periods
for	learning	open	and	close	at	different	times
depending	on	the	brain	regions	involved.	Early	sensory
areas	are	among	the	first	to	lose	their	ability	to	learn.
The	best-studied	example,	in	both	humans	and	animals,
is	binocular	vision.38 	To	compute	depth,	the	visual
system	merges	the	information	from	both	of	our	eyes.
Such	“binocular	fusion,”	however,	happens	only	if	the
visual	cortex	receives	high-quality	inputs	from	both	eyes
during	a	well-defined	sensitive	period,	which	lasts	a	few
months	for	cats	and	a	few	years	for	humans.	If,	during
this	period,	one	eye	remains	closed,	or	blurry,	or
misaligned	because	the	child	suffers	from	being
severely	cross-eyed,	then	the	cortical	circuit	responsible
for	the	fusion	of	the	eyes	fails	to	form,	and	the	resulting
loss	is	permanent.	This	condition,	known	as
“amblyopia,”	or	“lazy	eye,”	must	be	corrected	in	the
first	years	of	life,	ideally	before	three	years	of	age—
otherwise	the	wiring	of	the	visual	cortex	remains	forever
impaired.
Another	example	of	a	sensitive	period	is	the	one	that

allows	us	to	master	the	sounds	of	our	native	language.
Babies	are	champions	of	learning	languages:	at	birth,



they	distinguish	all	the	phonemes	of	all	possible
languages.	Wherever	they	are	born	and	whatever	their
genetic	background,	all	they	have	to	do	is	immerse
themselves	in	a	language	bath	(which	can	be
monolingual,	bilingual,	or	even	trilingual),	and	in	a	few
months,	their	hearing	becomes	attuned	to	the
phonology	of	the	language	that	surrounds	them.	As
adults,	we	have	lost	this	remarkable	learning	ability:	as
we	have	seen,	Japanese-speaking	individuals	can
spend	a	lifetime	in	an	English-speaking	country	without
ever	being	able	to	distinguish	the	sound	/R/	from	the
sound	/L/,	forever	confusing	“right”	with	“light,”	“red”
with	“led,”	and	“election”	with	“erection.”	But,	dear
British	or	American	reader,	don’t	feel	a	sense	of
superiority,	because,	as	a	native	English	speaker,	you
will	never	be	able	to	distinguish	the	dental	and	retroflex
versions	of	the	consonant	/T/	that	any	Hindi	speaker
perceives	as	a	no-brainer,	nor	the	short	and	long	vowels
of	Finnish	or	Japanese,	nor	the	four	kinds	of	tones	of
Chinese.
Research	shows	that	we	lose	this	ability	toward	the

end	of	the	first	year	of	life.39 	As	babies,	we
unconsciously	compile	statistics	about	what	we	hear,
and	our	brain	adjusts	to	the	distribution	of	phonemes
used	by	those	around	us.	Around	twelve	months	of
age,	this	process	converges	and	something	freezes	in
our	brain:	we	lose	the	ability	to	learn.	Except	in



extraordinary	circumstances,	we	will	never	again	be
able	to	pass	ourselves	off	as	native	speakers	of
Japanese,	Finnish,	or	Hindi—our	phonology	is	(almost)
set	in	stone.	It	takes	immense	effort	for	an	adult	to
recover	the	ability	to	discriminate	sounds	in	a	foreign
language.	Only	with	intense	and	focused	rehabilitation,
first	amplifying	the	differences	between	/R/	and	/L/	to
make	them	audible,	then	gradually	reducing	them,	can
a	Japanese	adult	succeed	in	partially	recovering	the
discrimination	of	these	consonants.40

This	is	why	scientists	speak	of	a	sensitive	period
rather	than	a	critical	period:	the	capacity	for	learning
shrinks	but	never	truly	reaches	zero.	In	adulthood,	the
residual	ability	to	acquire	foreign	phonemes	varies
significantly	across	people.	For	most	of	us,	trying	to
properly	speak	a	foreign	language	in	adulthood	is	an
unfathomable	endeavor—and	this	is	why	most	French
visitors	to	the	United	States	sound	like	Inspector
Clouseau	in	The	Pink	Panther	(“Vere	iz	ze	téléfawn?”).
Remarkably,	however,	some	people	maintain	a	capacity
to	learn	the	phonology	of	foreign	languages,	and	this
competence	can	be	partially	predicted	by	the	size,
shape,	and	number	of	connections	of	their	auditory
cortex.41 	These	lucky	brains	apparently	stabilized	a
more	flexible	set	of	connections—but	they	are	clearly
the	exception	rather	than	the	rule.



The	sensitive	period	for	mastering	the	phonology	of	a
foreign	language	closes	fast:	as	early	as	the	first	years	of
life,	a	child	is	already	much	less	competent	than	a	baby
who	is	a	few	months	old.	Hierarchically,	higher	levels	of
language	processing,	such	as	grammar	learning,	remain
open	a	little	longer,	but	start	closing	around	puberty.
We	know	this	from	studies	of	children	who	arrive	in	a
foreign	country	as	migrants	or	adoptees:	they	may
excel	in	their	new	language,	but	they	often	have	a	small
foreign	accent	and	occasional	syntax	errors	that	give
away	their	true	origin.	This	gap	is	barely	detectable	in
children	who	entered	the	country	at	the	age	of	three	or
four,	but	it	increases	massively	in	young	people	who
immigrated	in	adolescence	or	adulthood.42

A	recent	paper	collected	data	from	millions	of
second-language	learners	on	the	internet	and	used
them	to	model	the	average	human	language-learning
curve.43 	The	results	suggest	that	grammatical	learning
abilities	decline	slowly	during	childhood	and	drop
sharply	around	the	age	of	seventeen.	Because	it	takes
time	to	learn,	researchers	recommend	starting	well
before	the	age	of	ten.	Furthermore,	they	emphasize	the
value	of	an	immersive	stay	in	the	country	of	interest,
because	nothing	beats	social	interaction:	success	is
much	better	if	you	need	to	speak	a	foreign	language	in
order	to	get	served	lunch	or	get	on	a	bus	than	if	you
learn	in	a	classroom	or	through	watching	TV.	Once



again,	earlier	is	better:	brain	plasticity	for	grammar
learning	seems	to	drastically	shrink	at	the	end	of
puberty	(although,	not	all	of	this	drop	may	be	imputed
to	a	loss	of	brain	plasticity;	other	factors	related	to
motivation	and	socialization	probably	play	a	role	too).



The	capacity	to	acquire	a	foreign	language	decreases
dramatically	with	age,	suggesting	the	closure	of	a	sensitive
period	for	brain	plasticity.	The	later	you	learn	a	language,	the
lower	your	chances	of	producing	it	without	a	foreign	accent	or
grammatical	errors	(top).	Conversely,	the	longer	adopted
children	spend	in	their	country	of	origin	before	leaving,	the	more
their	brains	maintain	a	dormant,	unconscious	trace	of	their
language	of	origin	(bottom).

Up	until	now,	we	have	considered	only	second-
language	acquisition,	but	note	that	this	is	an	impure
situation—this	competence	declines	relatively	slowly,



over	a	decade	or	so,	and	never	quite	drops	to	zero,
possibly	because	it	relies,	at	least	in	part,	on	a	brain
already	molded	by	the	acquisition	of	a	first	language.
What	would	happen	if	a	child	were	deprived	of	all
exposure	to	any	language	during	the	first	years	of	life?
Legend	has	it	that	Pharaoh	Psamtik	I	was	the	first	to	ask
this	very	question.	He	left	two	children	in	the	care	of	a
shepherd	with	strict	prohibition	against	speaking	to
them—yet	both	babies	eventually	spoke	…	in	Phrygian!
This	“experiment”	was	allegedly	repeated	by	Emperor
Frederick	II	in	the	thirteenth	century,	by	James	IV,	king
of	Scotland,	in	the	fifteenth	century,	and	by	Jalaluddin
Muhammad	Akbar,	head	of	the	Mughal	Empire,	in	the
sixteenth	century—and	some	of	these	children,
deprived	of	any	language,	supposedly	died.	(Lacanian
psychoanalysts	go	crazy	over	this	story.)
Alas,	there	is	no	need	to	spread	such	fables,	for	this

situation	occurs	rather	regularly	in	every	country	of	the
world:	every	day,	children	are	born	deaf,	and	if	they	are
not	helped,	they	remain	prisoners	in	their	bubble	of
silence.	We	now	know	that	it	is	essential,	as	early	as	the
first	year	of	life,	to	give	them	a	language:	either	sign
language,	which	is	the	most	natural	(signed	languages
are	real	languages,	and	children	who	speak	them
develop	quite	normally),	or	a	spoken	language,	when
such	children	are	able	to	receive	a	cochlear	implant	that
partially	restores	their	hearing.	Here	again,	research	has



shown	the	necessity	to	act	very	quickly:44 	when
children	are	implanted	after	the	age	of	eight	months,
they	already	show	permanent	deficits	in	syntax.	They
never	fully	understand	sentences	where	certain
elements	are	moved	around,	a	phenomenon	called
“syntactic	movement.”	In	the	sentence	“Show	me	the
girl	that	the	grandmother	combs,”	it	is	not	obvious	that
the	first	noun	phrase,	“the	girl,”	is	actually	the	object	of
the	verb	“combs”	and	not	its	subject.	When	deaf
children	receive	a	cochlear	implant	after	the	age	of	one
or	two	years,	they	remain	unable	to	understand	such
sentences,	and	they	fail	a	test	which	requires	choosing
between	a	picture	where	the	grandmother	combs	the
girl’s	hair	and	another	where	the	girl	combs	the
grandmother’s	hair.
Early	childhood	seems	to	be	an	essential	phase	for

the	development	of	syntactic	movement:	toward	the
end	of	the	first	year	of	life,	if	the	brain	is	deprived	of
any	linguistic	interactions,	brain	plasticity	for	this	aspect
of	syntax	closes.	Remember	the	dying	children	in	Israel
in	2003:	a	few	weeks	of	thiamine	deprivation,	in	the	first
months	of	their	lives,	were	enough	to	make	them
forever	lose	a	sense	for	syntax.	These	results	converge
with	other	studies	conducted	on	feral	children	who
were	abandoned	by	their	families,	such	as	the	famous
Victor	of	Aveyron	(c.	1788–1828),	and	with	research	on
abused	children,	such	as	the	little	American	girl



ironically	named	Genie	and	brought	up	(or	rather
brought	down)	in	a	closet	for	over	thirteen	years
without	being	spoken	to.	Once	Victor	and	Genie	were
brought	back	to	civilization	after	so	many	years,	they
did	start	to	speak	and	acquired	some	vocabulary,	but
their	grammar	remained	permanently	compromised.
Language	learning	thus	provides	an	excellent

example	of	sensitive	periods	in	humans,	both	for
phonology	and	for	grammar.	It	is	also	a	good
illustration	of	the	modularity	of	the	brain:	while	the
grammar	and	sounds	of	language	freeze,	other
functions	such	as	the	capacity	to	learn	new	words	and
their	meanings	remain	open	throughout	life.	This
residual	plasticity	is	precisely	what	allows	us	to	learn,	at
any	age,	the	meanings	of	new	words,	such	as	fax,	iPad,
meme,	and	geek,	or	even	humorous	neologisms	such
as	askhole	(someone	who	keeps	asking	stupid,
pointless	questions)	or	chairdrobe	(that	pile	of	clothes
we	put	on	a	chair	instead	of	in	a	closet	or	dresser).	For
vocabulary	acquisition,	fortunately,	our	adult	brain
continues	to	exhibit	a	certain	level	of	childlike	plasticity
throughout	life—although	the	biological	reason	why
lexical	circuits	do	not	suffer	from	a	sensitive	period	is
currently	unknown.

A	SYNAPSE	MUST	BE	OPEN	OR	CLOSED



Why	does	synaptic	plasticity	close	up?	What	biological
mechanisms	interrupt	it?	The	origin	of	the	opening	and
closing	of	sensitive	periods	is	a	major	research	topic	in
contemporary	neuroscience.45 	The	closing	of	the
sensitive	period	seems	to	be	related	to	the	balance
between	excitation	and	inhibition.	In	children,
excitatory	neurons	are	rapidly	effective,	while	inhibitory
neurons	develop	more	gradually.	Some	neurons,	which
contain	a	protein	called	“parvalbumin,”	progressively
surround	themselves	with	a	hard	matrix,	a	sort	of	lattice
called	a	“perineuronal	net”	that	becomes	increasingly
tight	and	eventually	prevents	synapses	from	growing	or
moving	around.	Entangled	in	this	rigid	net,	neural
circuits	are	no	longer	free	to	change.	If	we	could
release	the	neurons	from	this	straitjacket,	for	example,
by	applying	a	pharmacological	agent	such	as	fluoxetine
(better	known	as	Prozac),	synaptic	plasticity	might
return.	This	is	a	huge	source	of	hope	for	the	treatment
of	stroke,	where	patients	have	to	relearn	their	lost
abilities	using	the	preserved	areas	surrounding	the
brain	lesion.
Other	factors	are	also	at	play	in	closing	a	sensitive

period.	For	example,	there	is	a	protein	called	“Lynx1,”
which,	when	present	in	a	neuron,	inhibits	the	massive
effects	of	acetylcholine	on	synaptic	plasticity.
Acetylcholine,	which	normally	signals	events	of	interest
and	enhances	synaptic	plasticity,	therefore	loses	its



effect	on	adult	circuits	invaded	by	Lynx1.	Some
researchers	have	tried	to	restore	plasticity	by	tampering
either	genetically	with	Lynx1	or	pharmacologically	with
acetylcholine	mechanisms—with	some	promising
success	in	animals.
Another	exciting	possibility,	perhaps	more	easily

applicable	to	humans,	consists	of	applying	a	current
that	depolarizes	neurons	and	brings	them	closer	to	their
firing	threshold.46 	As	a	result,	the	excitable	circuit
becomes	more	easily	activated	and	modifiable.	This
burgeoning	therapy	once	again	brings	hope	to
patients,	particularly	those	stuck	in	a	deep	depression:
the	application	of	a	small	electric	current	through	the
scalp	is	sometimes	enough	to	put	them	back	on	the
right	path.
One	may	wonder	why	the	nervous	system	persists	in

restraining	its	own	plasticity.	After	an	initial	stage	of
intense	plasticity,	there	must	be	some	evolutionary
advantage	in	closing	the	sensitive	period	and	avoiding
further	changes	to	brain	circuitry.	Simulations	of	neural
networks	show	that	low-level	neurons,	at	the	early
stages	of	the	visual	hierarchy,	quickly	acquire	simple
and	reproducible	receptive	fields,	such	as	contour
detectors.	It	is	likely	that,	beyond	the	first	few	months
of	life,	there	is	no	further	gain	associated	with
continuing	to	update	them,	since	this	type	of	detector
is	already	nearly	optimal.	Our	brains	might	as	well	save



the	energy	cost	associated	with	the	growth	of	synaptic
and	axonal	buds.	Moreover,	changing	the	organization
of	early	sensory	areas,	the	foundation	on	which	all
perception	rests,	risks	creating	havoc	in	higher-level
areas.	From	this	perspective,	after	some	time,	it	is
probably	worthwhile	to	leave	these	sensory	neurons
alone—and	this	is	probably	why	evolution	has	settled
on	mechanisms	that	close	off	the	sensitive	period	in
sensory	areas	at	an	earlier	point	in	development	than	in
higher-level	associative	areas.
The	good	side	of	things	is	that,	because	our	circuits

freeze	up,	we	get	to	keep,	for	our	entire	lives,	a	stable,
unconscious	synaptic	trace	of	what	we	learned	as
children.	Even	if	those	early	acquisitions	are	later
rendered	obsolete,	for	example,	because	they	are
overridden	by	more	recently	acquired	knowledge,	our
brain	circuits	retain	a	dormant	trace	of	our	beginnings.
A	remarkable	example	is	the	case	of	children	adopted
after	infancy	who	have	to	learn	a	second	maternal
language.	In	the	latter	half	of	the	twentieth	century,
Korea	was	one	of	the	countries	that	massively	resorted
to	international	adoption.	Since	1958,	over	a	period	of
forty	years,	nearly	180,000	Korean	children	were
adopted,	and	the	vast	majority	(about	130,000)	left	for	a
far-away	country,	with	more	than	10,000	reaching
France.	In	our	Paris-based	research	center,	Christophe
Pallier	and	I	scanned	twenty	of	them	as	adults.	Having



arrived	in	France	between	the	ages	of	five	and	nine
years	old,	these	young	men	and	women	had	virtually	no
conscious	recollection	of	their	native	land	(except	for	a
few	olfactory	memories,	especially	for	the	smell	of
food!).	Our	scans	showed	that	their	brains	behaved
essentially	like	that	of	a	child	born	in	France:47 	their
language	areas,	in	the	left	hemisphere,	responded
strongly	to	French	sentences,	but	not	at	all	to	Korean
sentences	(in	any	case,	no	more	than	to	any	other
unknown	language,	such	as	Japanese).	At	the	lexical
and	syntactic	level,	therefore,	it	seemed	that	the	new
language	had	supplanted	the	old	one.
And	yet	…	with	a	more	subtle	approach,	another

group	of	researchers	found	that	adopted	children	still
harbor,	deep	in	their	cortex,	a	dormant	trace	of	the
sound	patterns	of	their	original	language.48 	They
scanned	children	between	the	ages	of	nine	and
seventeen	who	had	spent	only	one	year	in	China	before
they	were	adopted	in	Canada.	And	instead	of	simply
letting	them	hear	sentences,	the	researchers	gave	them
the	difficult	task	of	discriminating	the	tonal	patterns	of
Chinese.	Brain	imaging	showed	that,	while	native
Canadian	adults	without	any	exposure	to	Chinese	failed
to	hear	these	tones	as	language,	merely	processing
them	as	a	melody	in	the	right	hemisphere,	the	Chinese-
Canadian	adoptees,	just	like	native	Chinese,	processed
them	as	language	sounds	in	a	phonological	region	of



the	left	hemisphere	called	the	“planum	temporale.”
Thus,	this	circuit	seems	to	become	engraved	with	a
native	language	in	the	first	year	of	life,	and	never	fully
reverses	afterwards.
This	is	not	the	only	example.	I	already	explained	how

a	child’s	lazy	eye	can	forever	affect	the	visual	circuits	in
the	brain	if	the	problem	is	left	unattended.	Ethologist
and	neurophysiologist	Eric	Knudsen	studied	an	animal
model	of	this	sensitive	period	effect.	He	raised	young
owls	and	had	them	wear	prism	glasses	that	shifted	the
entire	visual	field	about	twenty	degrees	to	the	right.
With	his	glasses-wearing	owls,	he	carried	out	the	finest
studies	of	the	neural	mechanisms	of	the	sensitive
period.49 	Only	those	owls	that	wore	prisms	during
their	youth	were	able	to	adjust	to	this	unusual	sensory
input:	their	auditory	responses	shifted	to	align	with	the
retina,	thus	enabling	them	to	hunt	based	on
synchronized	hearing	and	night	vision	signals.	Older
owls,	however,	even	after	having	worn	prisms	for
weeks,	failed	miserably.	Most	interestingly,	the	animals
trained	during	their	youth	harbored,	for	the	rest	of	their
lives,	a	permanent	neuronal	trace	of	their	early
experience.	After	learning,	a	two-route	circuit	was
observed:	some	axons	of	the	auditory	neurons	in	the
lower	colliculus	retained	their	normal	position,	while
others	reoriented	to	align	with	the	visual	map.	When
the	prisms	were	removed,	the	owls	quickly	learned	to



reorient	correctly;	and	as	soon	as	the	glasses	were	put
back	on,	the	animals	immediately	readjusted	by	shifting
the	auditory	scene	by	twenty	degrees.	Like	a	parfait
bilingual,	they	managed	to	switch	from	one	langue	to
the	other.	Their	brains	kept	a	permanent	record	of	the
two	sets	of	parameters	and	allowed	them	to	change
configuration	in	a	heartbeat—just	as	the	Chinese
adoptees	in	Canada	kept	a	cerebral	trace	of	the	sounds
of	their	original	language.
In	our	species	too,	early	learning—be	it	from

practicing	the	piano,	developing	binocular	vision,	or
even	acquiring	our	first	words—leaves	a	permanent
mark.	As	adults,	we	are	faster	to	recognize	the	words
that	we	first	heard	during	our	childhood,	such	as
“bottle,”	“dad,”	or	“diaper”—early	synaptic	plasticity
has	forever	engraved	them	in	our	memory.50 	The
juvenile	cortex	learns	languages	almost	effortlessly	and
stores	this	knowledge	in	the	permanent	geometry	of	its
axons	and	dendrites.



Early	experience	can	profoundly	shape	our	brain	circuits.	An	owl
can	adjust	to	wearing	glass	prisms	that	shift	its	vision—but	only
when	this	abnormal	experience	takes	place	during	its	youth.	The
owl’s	auditory	neurons,	which	locate	objects	by	relying	on	the
tiny	delay	between	sounds	reaching	the	right	and	left	ears,	adjust
in	order	to	align	themselves	with	visual	signals.	Axons	can	be
displaced	by	about	half	a	millimeter.	Following	this	early
experience,	the	two	circuits—normal	and	displaced—remain
present	throughout	the	owl’s	life.



A	MIRACLE	IN	BUCHAREST

The	evidence	of	heightened	brain	plasticity	in	the	first
few	years	means	that	investing	in	early	education
should	be	a	priority.	Early	childhood	is	a	highly	sensitive
period	when	many	of	a	child’s	brain	circuits	are	most
easily	transformed.	Later,	the	gradual	loss	of	synaptic
plasticity	makes	learning	increasingly	difficult—but	let
us	not	forget	that	this	progressive	freezing	of	neural
circuits	is	precisely	what	enables	our	brain	to	keep	a
stable	trace	of	all	that	we	learned	in	our	childhood.
Those	permanent	synaptic	marks	eventually	define	who
we	are.
Although	learning	is	easier	when	it	occurs	earlier,	it

would	be	profoundly	wrong	to	heed	the	credo	of	the
United	States’	“zero-to-three	movement”	and	conclude
that	everything	hinges	on	this	sensitive	period.	No,
most	learning	does	not	happen	before	three	years.
Fortunately	for	us,	our	brains	remain	pliable	for	many
more	years.	After	the	blessed	period	of	early	childhood,
neural	plasticity	diminishes,	but	it	never	disappears.	It
slowly	weakens	over	time,	starting	with	the	peripheral
sensory	areas,	but	high-level	cortical	areas	keep	their
potential	for	adaptation	throughout	our	lives.	This	is
why	many	adults	successfully	learn	to	play	an
instrument	or	speak	a	second	language	in	their	fifties	or
sixties.	And	this	is	also	why	educational	interventions
sometimes	work	miracles,	especially	when	they	are	fast



and	intense.	Rehabilitation	may	not	restore	all	the
subtleties	of	syntactic	movement	or	the	perception	of
Chinese	tones,	but	it	will	succeed	in	transforming	an	at-
risk	child	into	a	fulfilled	and	responsible	young	adult.
The	Bucharest	orphans	provide	a	heartbreaking

example	of	this	remarkable	resilience	of	the	developing
brain.	In	December	1989,	Romania	suddenly	rose	up
against	the	communist	regime.	In	less	than	a	week,	the
citizens	in	revolt	drove	the	dictator	Nicolae	Ceaușescu
(1918–1989)	and	his	wife	out	of	power—both	were
hastily	tried,	convicted,	and	shot	on	Christmas	Day.
Shortly	after,	the	world	was	appalled	upon	discovering
the	dreadful	living	conditions	of	the	residents	in	this
small	corner	of	Europe.	One	of	the	most	unbearable
sights	was	that	of	the	young,	dead-eyed,	and
emaciated	children	abandoned	across	nearly	six
hundred	Romanian	orphanages.	In	those	true	death
houses,	close	to	150,000	children	were	packed	in	and
left	almost	entirely	to	themselves.	The	Ceaușescu
regime	was	so	profoundly	convinced	that	the	strength
of	a	country	lies	in	its	youth	that	it	had	put	into	effect	a
delirious	pro-birth	policy.	Everything	was	done	to
ensure	births	by	the	thousands,	from	massive	taxation
of	single	people	and	couples	without	children	to	the
prohibition	of	contraception	and	abortion,	and	even	the
death	penalty	for	those	who	chose	to	abort	….	Couples
who	could	not	provide	for	their	children	had	no	choice



but	to	hand	them	over	to	the	state	services.	Hence	the
hundreds	of	orphanages,	which,	quickly	overwhelmed,
failed	to	provide	hygiene,	food,	heating,	and	the
minimum	of	human	contact	and	cognitive	stimulation
essential	for	normal	child	development.	This	disastrous
policy	produced	thousands	of	neglected	children	with
major	cognitive	and	emotional	deficits	in	all	areas.
After	the	country	opened	up	its	borders,	several

NGOs	looked	into	this	catastrophe.	From	this	was	born
a	very	special	research	project,	the	Bucharest	Early
Intervention	Project.51 	With	the	agreement	of	the
Romanian	state	secretariat	for	child	welfare,	Harvard
researcher	Charles	Nelson	decided	to	study	with
scientific	rigor	the	consequences	of	having	lived	in	an
orphanage,	and	the	possibility	of	saving	these	children
by	placing	them	in	foster	families.	As	there	was	no
proper	placement	program	in	Romania,	he	set	up	his
own	recruitment	system	and	managed	to	find	56
volunteer	families	who	were	willing	to	adopt	1	or	2
orphans	each.	Yet	this	was	a	mere	drop	of	water	in	the
dark	oceans	of	the	Romanian	orphanages:	only	68
children	were	able	to	leave.	Nelson’s	Science
publication	describes	in	detail	the	dramatic	Dickensian
moment	when	136	children	were	gathered	and
numbered	from	1	to	136,	and	then	those	numbers	were
drawn	at	random	from	a	large	hat,	determining	who
would	remain	in	an	orphanage	and	who	would	finally



find	a	family	home.	This	procedure	may	sound
shocking,	but	what	more	could	have	been	done?
Because	human	resources	were	limited,	a	random	draw
was	probably	the	fairest	solution.	In	addition,	the	team
continued	to	raise	funds	to	lift	more	and	more	children
out	of	their	misery,	as	well	as	to	advise	the	new
Romanian	government	on	its	handling	of
institutionalized	children,	and	a	second	Science	article
found	that	the	initial	study	therefore	met	the	ethical
criteria	for	scientific	research.52



Childhood	injuries	leave	their	mark	on	the
brain,	but	early	intervention	can	minimize
them.	In	Romanian	orphanages	during	the
Ceaușescu	dictatorship,	children	were
mistreated	and	deprived	of	interaction	with
adults.	By	the	age	of	eight,	most	of	these
orphans	showed	major	deficits	in	social	skills,
whether	they	had	remained	in	an	institution
or	been	placed	in	a	family	after	the	age	of
twenty	months.	However,	those	who	had
been	placed	in	foster	care	before	the	age	of
twenty	months	exhibited	essentially	normal
skills.



The	random	draw,	however,	allowed	a	rigorous
question	to	be	asked:	All	other	things	being	equal,	did
early	placement	in	a	foster	family	put	these	children
back	on	their	feet?	The	answer	was	positive,	but	highly
age-dependent:	only	the	children	who	were	placed	in	a
home	before	twenty	months	of	age	ended	up	much
better	off	than	those	who	had	remained	in	the
orphanage.
Dozens	of	previous	studies	had	documented	the

dramatic	effects	of	emotional	and	social	isolation	on
brain	development,	and	the	Bucharest	study	was	no
exception:	compared	to	children	born	in	a	typical
family,	all	the	orphans	presented	with	severe	deficits	in
cognitive	function.	Even	fundamental	aspects	of	brain
functioning,	such	as	glucose	metabolism	and	total
volume	of	gray	matter,	were	deficient.	After	foster	care,
however,	some	of	these	measures	sharply	rose.	Six
years	later,	by	the	age	of	eight,	the	children	who	had
been	placed	in	a	home	before	twenty	months	of	age
had	made	significant	progress	relative	to	the	control
group,	to	such	an	extent	that	they	no	longer	differed
from	children	raised	in	their	families	from	birth.	Several
measures	had	normalized,	including	the	strength	of
their	brains’	alpha	waves,	which	is	a	marker	of	attention
and	vigilance.	Social	skills	and	vocabulary	were	also
markedly	improved.



This	dramatic	progress	should	not	obscure	the	fact
that	these	children	continued	to	lag	behind	in	other
measures,	including	a	persistent,	and	probably
permanent,	lack	of	gray	matter.	Most	crucially,	the
children	who	had	been	adopted	after	twenty	months
exhibited	severe	impairments	in	all	domains.	Thus,	no
amount	of	family	support	can	fully	replace	twenty
months	of	lost	love	(and	simple	nutrition),	and	these
children	will	always	bear,	in	their	brains,	the	scars	of	the
serious	deprivation	they	suffered.	But	the	Bucharest
orphans,	like	the	adoptees	from	Korea,	should	remind
us	that	we	should	never	lose	hope.	Brain	plasticity	is
certainly	stronger	in	the	young,	but	it	remains	present
at	any	age.	Early	trauma	may	have	a	severe	impact,	yet
the	resilience	of	neural	circuits	is	equally	remarkable.
Provided	they	are	addressed	as	early	as	possible,	many
brain	injuries	are	far	from	irreversible.







CHAPTER	6

Recycle	Your	Brain

LET’S	SUMMARIZE	WHAT	WE	HAVE	COVERED	SO	FAR.	THE
BLANK-SLATE	assumption	is	clearly	wrong:	babies	are
born	with	considerable	core	knowledge,	a	rich	set	of
universal	assumptions	about	the	environment	that	they
will	later	encounter.	Their	brain	circuits	are	well
organized	at	birth	and	give	them	strong	intuitions	in	all
sorts	of	domains:	objects,	people,	time,	space,	numbers
….	Their	statistical	skills	are	remarkable—they	already
act	as	budding	scientists,	and	their	sophisticated
learning	abilities	allow	them	to	progressively	converge
onto	the	most	appropriate	models	of	the	world.
At	birth,	all	the	large	fiber	bundles	of	the	brain	are

already	in	place.	Brain	plasticity	can,	however,
reorganize	their	terminal	connections.	Millions	of
synapses	undergo	plastic	changes	every	time	we
acquire	new	knowledge.	Enriching	children’s
environments,	for	instance,	by	sending	them	to	school,
can	deeply	enhance	their	brains	and	augment	them
with	skills	that	they	will	keep	throughout	their	lives.	This
plasticity	is	not	unconstrained,	however.	It	is	restricted
in	space	(on	the	order	of	a	few	millimeters),	as	well	as	in



time—many	circuits	begin	to	close	off	after	a	few
months	or	years.
In	this	chapter,	I	look	at	the	role	that	formal

education	plays	in	early	brain	development.	Education,
indeed,	raises	a	paradox:	Why	is	it	that	Homo	sapiens
can	take	chalk	or	a	keyboard	and	start	writing	or	making
calculations?	How	could	the	human	species	expand	its
capabilities	in	novel	directions	that	previously	played	no
part	in	its	genetic	evolution?	That	the	human	primate
manages	to	learn	to	read	or	to	calculate	should	never
cease	to	amaze	us.	As	Vladimir	Nabokov	(1899–1977)
put	it	so	well,	“We	are	absurdly	accustomed	to	the
miracle	of	a	few	written	signs	being	able	to	contain
immortal	imagery,	involutions	of	thought,	new	worlds
with	live	people,	speaking,	weeping,	laughing.	What	if
we	awake	one	day,	all	of	us,	and	find	ourselves	utterly
unable	to	read?”1

I	have	studied	at	length	the	minds	and	brains	of
illiterate	adults,	whether	it	be	in	Portugal,	Brazil,	or	the
Amazon—people	who	never	had	the	chance	to	go	to
school,	simply	because	their	families	could	not	afford	it
or	because	there	were	no	schools	nearby.	Their	skills
are,	in	certain	ways,	profoundly	different:2 	not	only	are
they	incapable	of	recognizing	letters,	but	they	also	have
difficulties	recognizing	shapes	and	distinguishing	mirror
images,3 	paying	attention	to	a	part	of	a	face,4 	and
memorizing	and	distinguishing	spoken	words.5 	So



much	for	Plato,	who	naively	believed	that	learning	to
read	would	ruin	our	internal	memory	by	forcing	us	to
rely	on	the	external	memory	of	books.	Nothing	could
be	further	from	the	truth.	The	myth	of	the	illiterate	bard
who	effortlessly	musters	immense	powers	of	memory	is
just	that:	a	myth.	We	all	need	to	exercise	our	memory—
and	it	gets	better,	not	worse,	by	having	gone	to	school
and	learned	to	read.
The	impact	of	education	is	even	more	striking	in

mathematics.6 	We	discovered	this	by	studying	the
many	Amazon	Indians	who	never	had	the	chance	to	go
to	school.	First	of	all,	many	of	them	do	not	know	how	to
precisely	count	a	collection	of	items.	Many	of	their
languages	do	not	even	include	a	counting	system—
they	either	have	just	a	handful	of	words	for	“few”	versus
“many”	(like	the	Pirahã),	or	just	fuzzy	words	for	the
numbers	one	to	five	(like	the	Munduruku),	and	if	they
learn	to	count	at	all,	for	instance,	using	Spanish	or
Portuguese	number	words,	it	is	with	a	huge	delay	(like
the	Tsimane)	compared	to	Western	children.7 	Second,
they	possess	only	the	rudiments	of	mathematical
intuition:	they	distinguish	basic	geometrical	shapes,
understand	the	organization	of	space,	can	navigate	in	a
straight	line,	perceive	the	differences	between
quantities	such	as	thirty	and	fifty,	and	know	that
numbers	can	be	ordered	from	left	to	right.	We	inherit
these	skills	from	our	evolution	and	share	them	with



other	animals	as	diverse	as	ravens,	macaque	monkeys,
and	freshly	hatched	chicks.	However,	education	vastly
increases	these	initial	skills.	For	instance,	uneducated
Amazon	Indians	do	not	seem	to	understand	that	there
is	the	same	interval	of	+1	between	any	two	consecutive
numbers.	Education	massively	overturns	our	sense	of
the	number	line:	as	we	learn	to	count	and	to	perform
exact	arithmetic,	we	discover	that	every	number	n	has	a
successor	n	+	1.	Eventually,	we	understand	that	all
consecutive	numbers	are	equidistant	and	form	a	linear
scale—whereas	very	young	children	and	unschooled
adults	consider	this	line	to	be	compressed,	since	large
numbers	seem	to	be	closer	to	each	other	than	small
ones.8 	If	we	had	only	an	approximate	sense	of
numbers	like	other	animals	do,	we	would	be	unable	to
distinguish	eleven	from	twelve.	We	owe	the	refined
precision	of	our	number	sense	to	education—and	on
this	symbolic	foundation	rests	the	whole	field	of
mathematics.

THE	NEURONAL	RECYCLING	HYPOTHESIS

How	does	education	revolutionize	our	mental	skills,
transforming	us	into	primate	readers	of	Nabokov,
Steinbeck,	Einstein,	or	Grothendieck?	As	we	have	seen,
all	that	we	learn	passes	through	the	modification	of	pre-
established	brain	circuits,	which	are	largely	organized	at
birth	but	remain	capable	of	changing	on	the	scale	of	a



few	millimeters.	Thus,	all	the	diversity	of	human	culture
must	fit	within	the	constraints	imposed	by	our	neuronal
nature.
To	resolve	this	paradox,	I	have	formulated	the

neuronal	recycling	hypothesis.9 	The	idea	is	simple:
while	synaptic	plasticity	makes	the	brain	malleable—
especially	in	humans,	where	childhood	lasts	for	fifteen
or	twenty	years—our	brain	circuits	remain	subject	to
strong	anatomical	constraints,	inherited	from	our
evolution.	Therefore,	each	new	cultural	object	we
invent,	such	as	the	alphabet	or	Arabic	numerals,	must
find	its	“neuronal	niche”	in	the	brain:	a	set	of	circuits
whose	initial	function	is	sufficiently	similar	to	its	new
cultural	role,	but	also	flexible	enough	to	be	converted
to	this	new	use.	Any	cultural	learning	must	rely	on	the
repurposing	of	a	preexisting	neural	architecture,	whose
properties	it	recycles.	Education	must	therefore	fit
within	the	inherent	limits	of	our	neural	circuits,	by	taking
advantage	of	their	diversity,	as	well	as	of	the	extended
period	of	neural	plasticity	which	is	characteristic	of	our
species.
According	to	this	hypothesis,	to	educate	oneself	is	to

recycle	one’s	existing	brain	circuits.	Over	the	millennia,
we	have	learned	to	make	something	new	out	of
something	old.	Everything	we	learn	at	school	reorients
a	preexisting	neural	circuit	in	a	new	direction.	To	read
or	calculate,	children	repurpose	existing	circuits	that



originally	evolved	for	another	use,	but	which,	due	to
their	plasticity,	manage	to	adapt	to	a	new	cultural
function.
Why	did	I	coin	this	strange	term,	“neuronal

recycling”?	Because	the	corresponding	French	word,
recyclage,	perfectly	combines	two	ideas	that
characterize	what	happens	in	our	brain—a	reuse	of
some	material	with	unique	properties,	and	also	a
reorientation	toward	a	new	career:

Recycling	a	material	means	giving	it	a	second	life
by	reintroducing	it	into	a	novel	production	cycle.
Such	reuse	of	materials,	however,	is	limited:	one
cannot	build	a	car	out	of	recycled	paper!	Each
material	possesses	intrinsic	qualities	that	make	it
more	or	less	suitable	for	other	uses.	Similarly,
each	region	of	the	cortex—by	virtue	of	its
molecular	properties,	local	circuits,	and	long-
range	connections—possesses	its	own
characteristics	from	birth	on.	Learning	must
conform	to	these	material	constraints.

In	French,	the	term	recyclage	also	applies	to	a
person	who	is	training	for	a	new	job:	it	means	to
receive	additional	training	in	order	to	adapt	to	an
unexpected	change	in	one’s	career.	This	is
exactly	what	happens	to	our	cortex	when	we
learn	to	read	or	to	do	math.	Education	grants	our



cortex	new	functions	that	go	beyond	the	normal
abilities	of	the	primate	brain.

With	neuronal	recycling,	I	wanted	to	distinguish	the
fast	learning	of	a	new	cultural	skill	from	the	many	other
situations	where	biology,	in	the	course	of	a	slow
evolutionary	process,	makes	something	new	with
something	old.	Indeed,	in	the	Darwinian	process	of
evolution	by	natural	selection,	repurposing	of	older
materials	is	common.	Genetic	recombination	can
spruce	up	ancient	organs	and	turn	them	into	elegant,
innovative	machines.	Bird	feathers?	Old	thermal
regulators	converted	into	aerodynamic	flaps.	Reptilian
and	mammalian	legs?	Antediluvian	fins.	Evolution	is	a
great	tinkerer,	says	the	French	Nobel	Prize–winning
biologist	François	Jacob	(1920–2013):	in	its	workshop,
lungs	convert	into	floating	organs,	an	old	piece	of	the
reptilian	jaw	becomes	the	inner	ear,	and	even	the	sneer
of	hungry	carnivores	turns	into	Mona	Lisa’s	delicate
smile.
The	brain	is	no	exception.	Language	circuits,	for

instance,	may	have	appeared	during	hominization
through	the	duplication	and	repurposing	of	previously
established	cortical	circuits.10 	But	such	slow	genetic
modifications	do	not	fall	under	my	definition	of
neuronal	recycling.	The	appropriate	term	is
“exaptation,”	a	neologism	coined	by	Harvard



evolutionist	Stephen	Jay	Gould	(1941–2002)	and	Yale
paleontologist	Elisabeth	Vrba	and	based	on	the	word
“adaptation.”	An	old	mechanism	is	exapted	when	it
acquires	a	different	use	in	the	course	of	Darwinian
evolution.	(A	simple	mnemonic	may	help:	exaptation
makes	your	ex	apt	to	a	new	task!)	Because	it	is	based
on	the	spreading	of	genes	through	a	population;	at	the
species	level,	exaptation	acts	over	tens	of	thousands	of
years.	Neuronal	recycling,	on	the	other	hand,	occurs
within	an	individual	brain	and	on	a	much	shorter	time
frame,	anywhere	from	days	to	years.	Recycling	a	brain
circuit	means	reorienting	its	function	without	genetic
modification,	merely	through	learning	and	education.
My	intent	in	formulating	the	neuronal	recycling

hypothesis	was	to	explain	the	particular	talent	of	our
species	for	going	beyond	its	usual	ecological	niche.
Humans,	indeed,	are	unique	in	their	ability	to	acquire
new	skills,	such	as	reading,	writing,	counting,	doing
math,	singing,	dressing,	riding	a	horse,	and	driving	a
car.	Our	extended	brain	plasticity,	combined	with	novel
symbolic	learning	algorithms,	has	given	us	a	remarkable
ability	for	adaptation—and	our	societies	have
discovered	means	of	further	amplifying	our	skills	by
subjecting	children,	day	after	day,	to	the	powerful
regime	of	school.
To	emphasize	the	singularity	of	the	human	species	is

not	to	deny,	of	course,	that	neuronal	recycling,	on	a



smaller	scale,	also	exists	in	other	animals.	Recent
technologies	have	made	it	possible	to	record	the
activity	of	the	same	hundred	neurons	for	several	weeks,
while	monkeys	acquire	a	new	skill—and,	thus,	to	put
the	recycling	view	to	a	strong	test.	These	experiments
were	able	to	address	a	simple	but	profound	prediction
of	the	theory:	Can	learning	ever	radically	change	the
neural	code	in	a	given	brain	circuit,	or,	as	the	recycling
view	would	predict,	does	learning	solely	repurpose	the
circuit?
In	a	recent	experiment,	using	a	brain-computer

interface,	researchers	asked	a	monkey	to	learn	to
control	its	own	brain.	They	taught	the	animal	that	to
make	a	cursor	go	right,	it	had	to	activate	ten	specific
neurons;	and	to	make	the	cursor	go	up,	it	should
activate	ten	other	cells;	and	so	on.11 	Remarkably,	this
procedure	worked:	in	a	few	weeks,	the	animal	learned
to	bend	the	activity	of	ten	arbitrarily	chosen	neurons	in
order	to	make	the	cursor	move	at	will.	However—and
this	is	the	key—the	monkey	was	able	to	get	the	cursor
to	move	only	if	the	neuronal	activity	that	it	was	asked	to
produce	did	not	deviate	too	much	from	what	its	cortex
was	already	spontaneously	producing	before	training.
In	other	words,	what	the	monkey	was	asked	to	learn
had	to	fit	within	the	repertoire	of	the	neuronal	circuit
that	it	was	asked	to	retrain.



To	appreciate	what	the	researchers	showed,	it	is
important	to	realize	that	the	dynamics	of	brain	circuits
are	constrained.	The	brain	does	not	explore	every
configuration	of	activity	that	it	might	be	able	to	access.
In	theory,	in	a	group	of	a	hundred	neurons,	activity
could	span	a	hundred-dimension	space,	yielding	an
unfathomable	number	of	states	(if	we	consider	that
each	neuron	could	be	on	or	off,	this	number	exceeds
2100,	or	over	a	thousand	billion	billion	billion).	Yet,	in
reality,	brain	activity	visits	only	a	fraction	of	this
humongous	universe,	typically	restricted	to	around	ten
dimensions.	With	this	idea	in	mind,	the	constraint	on
learning	can	be	formulated	succinctly:	a	monkey	can
learn	a	novel	task	only	if	what	we	ask	of	its	cortex	“fits”
within	this	preexisting	space.	If,	on	the	other	hand,	we
ask	the	monkey	to	activate	a	combination	of	neurons
that	is	never	observed	in	prior	activity,	it	fails
dramatically.
Note	that	the	learned	behavior	itself	may	be	radically

new—who	could	have	foreseen	that	a	primate	would
one	day	control	a	cursor	on	a	computer	screen?
However,	the	neuronal	states	that	make	this	behavior
possible	must	fit	within	the	space	of	available	cortical
activity	patterns.	This	result	directly	validates	a	key
prediction	of	the	neuronal	recycling	hypothesis—the
acquisition	of	a	novel	skill	does	not	require	a	radical



rewriting	of	cortical	circuits	as	if	they	were	a	blank	slate,
but	merely	a	repurposing	of	their	existing	organization.
It	is	becoming	increasingly	clear	that	each	region	of

the	brain	imposes	its	own	set	of	constraints	on	learning.
In	a	region	of	the	parietal	cortex,	neural	activity	is
generally	confined	to	a	single	dimension,	a	straight	line
in	high-dimensional	space.12 	These	parietal	neurons
encode	all	incoming	data	on	an	axis	ranging	from	small
to	large—they	are	therefore	ideally	suited	to	encode
quantities	and	their	relative	sizes.	Their	neural	dynamics
may	seem	extraordinarily	limited,	but	what	seems	like	a
handicap	could	actually	be	an	advantage	when	it	comes
to	representing	quantities,	such	as	size,	number,	area,
or	any	other	parameter	that	can	be	ordered	from	small
to	large.	In	a	sense,	this	part	of	the	cortex	may	be	pre-
wired	to	encode	quantities—indeed,	it	is	systematically
recruited	as	soon	as	we	manipulate	quantities	along	a
linear	axis,	from	numbers	to	social	status	(who	is
“above”	whom	on	the	social	ladder).13

For	another	example,	consider	the	entorhinal	cortex,
a	region	of	the	temporal	cortex	that	contains	the
famous	grid	cells	that	map	out	space	(which	I	described
in	Chapter	4).	In	this	region,	the	neural	code	is	two-
dimensional:	even	if	there	are	millions	of	neurons	in	this
part	of	the	brain,	their	activity	cannot	help	but	remain
confined	to	a	plane,	or,	technically,	a	two-dimensional
manifold	in	high-dimensional	space.14 	Again,	this



property,	far	from	being	a	drawback,	is	obviously
perfectly	suited	to	form	a	map	of	the	environment,	as
seen	from	above—and	in	fact,	we	know	that	this	region
hosts	the	mental	GPS	by	which	a	rat	locates	itself	in
space.	Remarkably,	recent	work	has	shown	that	this
same	region	also	lights	up	as	soon	as	we	have	to	learn
to	represent	any	data	on	a	two-dimensional	map,	even
if	these	data	are	not	directly	spatial.15 	In	one
experiment,	for	instance,	birds	could	vary	in	two
dimensions:	the	length	of	their	neck,	and	the	length	of
their	legs.	Once	the	human	participants	had	learned	to
represent	this	unusual	“bird	space,”	they	used	their
entorhinal	cortex,	along	with	a	few	other	areas,	to
navigate	it	mentally.
And	the	list	could	go	on	and	on:	the	ventral	visual

cortex	excels	at	representing	visual	lines	and	shapes,
Broca’s	area	codes	for	syntactic	trees,16 	and	so	forth.
Each	region	has	its	own	preferred	dynamics	to	which	it
remains	faithful.	Each	projects	its	own	space	of
hypotheses	onto	the	world:	one	tries	to	fit	the	incoming
data	on	a	straight	line,	another	tries	to	display	them	on
a	map,	a	third	on	a	tree	….	These	hypotheses	spaces
precede	learning	and,	in	a	certain	way,	make	it
possible.	We	can,	of	course,	learn	new	facts,	but	they
need	to	find	their	neuronal	niche,	a	representation
space	adapted	to	their	natural	organization.



Let	us	now	see	how	this	idea	applies	to	the	most
fundamental	areas	of	school	learning:	arithmetic	and
reading.

MATHEMATICS	RECYCLES	THE	CIRCUITS	FOR
APPROXIMATE	NUMBER

Let	us	first	take	the	example	of	mathematics.	As	I
explained	in	my	book	The	Number	Sense,17 	there	is
now	considerable	evidence	to	show	that	math
education	(like	so	many	other	aspects	of	learning)	does
not	get	imprinted	onto	the	brain	like	a	stamp	on	melted
wax.	On	the	contrary,	mathematics	molds	itself	into	a
preexisting,	innate	representation	of	numerical
quantities,	which	it	then	extends	and	refines.
In	both	humans	and	monkeys,	the	parietal	and

prefrontal	lobes	contain	a	neural	circuit	that	represents
numbers	in	an	approximate	manner.	Before	any	formal
education,	this	circuit	already	includes	neurons	sensitive
to	the	approximate	number	of	objects	in	a	concrete
set.18 	What	does	learning	do?	In	animals	trained	to
compare	quantities,	the	amount	of	number-detecting
neurons	grows	in	the	frontal	lobe.19 	Most	important,
when	they	learn	to	rely	on	the	numerical	symbols	of
Arabic	digits,	rather	than	on	the	mere	perception	of
approximate	sets,	a	fraction	of	these	neurons	become
selective	to	such	digits.20 	This	(partial)	transformation
of	a	circuit	in	order	to	incorporate	the	cultural	invention



of	numerical	symbols	is	a	great	example	of	neuronal
recycling.
In	humans,	when	we	learn	to	perform	basic	arithmetic

(addition	and	subtraction),	we	continue	to	recycle	that
region,	but	also	the	nearby	circuitry	of	the	posterior
parietal	lobe.	That	region	is	used	to	shift	our	gaze	and
our	attention—and	it	seems	that	we	reuse	those	skills	to
move	in	number	space:	adding	activates	the	same
circuits	that	move	your	attention	to	the	right,	in	the
direction	of	larger	numbers,	while	subtracting	excites
circuits	that	shift	your	attention	to	the	left.21 	We	all
possess	a	kind	of	number	line	in	our	heads,	a	mental
map	of	the	number	axis	on	which	we	have	learned	to
accurately	move	when	we	perform	calculations.
Recently,	my	research	team	has	provided	a	more

stringent	test	of	the	recycling	hypothesis.	With	Marie
Amalric,	a	young	mathematician	turned	cognitive
scientist,	we	wondered	whether	the	same	circuits	of	the
parietal	lobe	continue	to	be	used	to	represent	the	most
abstract	concepts	in	mathematics.22 	We	recruited
fifteen	professional	mathematicians	and	scanned	their
brains	with	functional	MRI	while	we	presented	them
with	abstruse	mathematical	expressions	that	only	they
could	understand,	including	formulas	like	∫s	∇	×	F	•	dS
and	statements	such	as	“Any	square	matrix	is
equivalent	to	a	permutation	matrix.”	As	we	predicted,
these	high-level	mathematical	objects	activated	the



very	same	brain	network	that	activates	when	a	baby
sees	one,	two,	or	three	objects,23 	or	when	a	child
learns	to	count	(see	figure	12	in	the	color	insert).24 	All
mathematical	objects,	from	Grothendieck’s	topoi	to
complex	manifolds,	or	functional	spaces,	find	their
ultimate	roots	in	the	recombination	of	elementary
neural	circuits	present	during	childhood.	All	of	us,	at
any	stage	of	the	cultural	construction	of	mathematics,
from	elementary	school	students	to	Fields	Medal
winners,	continually	refine	the	neural	code	of	that
specific	brain	circuit.
And	the	organization	of	that	circuit	is	under	strong

hereditary	constraints,	those	of	the	universal	genetic
endowment	that	makes	us	human.	While	learning
allows	it	to	accommodate	many	new	concepts,	its
overall	architecture	remains	the	same	in	all	of	us,
independent	of	experience.	My	colleagues	and	I
obtained	strong	support	for	this	assertion	when	we
studied	the	brain	organization	of	mathematicians	whose
sensory	experience,	since	childhood,	has	been	radically
different:	blind	mathematicians.25 	However	surprising
this	may	seem,	it	is	not	uncommon	for	a	blind	person	to
become	an	excellent	mathematician.	Perhaps	the	best-
known	blind	mathematician	is	Nicholas	Saunderson
(1682–1739),	who	became	blind	around	the	age	of
eight	and	was	so	brilliant	that	he	ended	up	holding	the
chair	of	Isaac	Newton	at	Cambridge	University.



Saunderson	is	no	longer	available	for	a	brain	scan,
but	Marie	Amalric	and	I	managed	to	contact	three
contemporary	blind	mathematicians,	all	of	whom	held
university	positions	in	France.	One	of	them,	Emmanuel
Giroux,	is	a	true	giant	of	mathematics	and	currently
heads	a	laboratory	of	sixty	people	at	the	École	normale
supérieure	in	Lyon.	Blind	since	the	age	of	eleven,	he	is
most	well-known	for	his	beautiful	proof	of	an	important
theorem	of	contact	geometry.
The	very	existence	of	blind	mathematicians	refutes

Alan	Turing’s	empiricist	view	of	the	brain	as	a
“notebook”	with	“lots	of	blank	sheets”	that	sensory
experience	progressively	fills	out.	Indeed,	how	could
blind	people	infer,	from	such	a	distinct	and	restricted
experience,	the	very	same	abstract	notions	as	sighted
mathematicians	if	they	did	not	already	possess	the
circuits	capable	of	generating	them?	As	Emmanuel
Giroux	says,	paraphrasing	The	Little	Prince,	“In
geometry,	what	is	essential	is	invisible	to	the	eye.	It	is
only	with	the	mind	that	you	can	see	well.”	In
mathematics,	sensory	experiences	do	not	matter	much;
it	is	the	ideas	and	concepts	that	do	the	heavy	lifting.
If	experience	determined	the	organization	of	the

cortex,	then	our	blind	mathematicians,	who	learned
about	the	world	from	touch	and	hearing,	would
activate,	when	they	do	mathematics,	brain	areas	very
different	from	those	of	the	sighted.	The	neuronal



recycling	hypothesis,	on	the	contrary,	predicts	that	the
neural	circuits	of	mathematics	should	be	fixed—only	a
specific	set	of	brain	areas,	present	at	birth,	should	be
capable	of	repurposing	themselves	to	host	such	ideas.
And	this	is	indeed	exactly	what	we	found	when	we
scanned	our	three	blind	professors.	As	we	expected,
when	they	visualized	a	mathematical	statement	and
assessed	its	truth	value,	they	recruited	the	very	same
parietal	and	frontal	lobe	pathways	as	a	sighted
mathematician	(see	figure	13	in	the	color	insert).
Sensory	experiences	were	irrelevant:	only	this	circuit
could	accommodate	mathematical	representations.
The	only	difference	is	that,	when	our	three	blind

mathematicians	thought	about	their	favorite	field,	they
also	recruited	an	additional	region	of	the	brain:	their
early	visual	cortex,	in	the	occipital	pole,	the	brain	region
that,	in	any	sighted	person,	processes	the	images	that
impinge	on	the	retina!	In	fact,	this	is	a	result	that	Cédric
Villani,	another	brilliant	mathematician	and	Fields
Medal	winner,	had	intuitively	predicted.	When	we
discussed	this	experiment	prior	to	running	it,	he
jokingly	said	to	me,	“You	know,	Emmanuel	Giroux	is	a
truly	great	mathematician,	but	he	is	also	very	fortunate:
because	he	is	blind,	he	can	devote	even	more	cortex	to
math!”
Villani	was	right.	In	people	with	normal	eyesight,	the

occipital	region	is	too	busy	with	early	vision	to	perform



any	other	function,	such	as	mathematics.	In	the	blind,
however,	it	is	released	from	this	visual	role,	and	instead
of	remaining	inactive,	it	transforms	itself	to	perform
more	abstract	tasks,	including	mental	calculation	and
mathematics.26 	And	in	people	who	are	born	blind,	this
reorganization	seems	to	be	even	more	extreme:	the
visual	cortex	exhibits	totally	unexpected	responses,	not
only	to	numbers	and	math,	but	also	to	the	grammar	of
spoken	language,	similar	to	Broca’s	area.27

The	reason	for	such	abstract	responses	in	the	visual
cortex	of	blind	people	remains	the	subject	of
theoretical	debate:	Does	this	total	reorganization	of	the
cortex	represent	a	genuine	case	of	neuronal	recycling,
or	is	it	merely	an	extreme	proof	of	brain	plasticity?28 	In
my	opinion,	the	scales	are	tipped	in	favor	of	the
neuronal	recycling	hypothesis,	because	there	is
evidence	that	the	preexisting	organization	of	this	region
is	not	erased,	as	it	would	be	if	brain	plasticity	acted	as	a
sponge	capable	of	wiping	clean	the	visual	cortex’s
chalkboard.	Indeed,	the	visual	cortex	of	the	blind	seems
to	largely	maintain	its	normal	connectivity	and	neural
maps29 	while	reusing	them	for	other	cognitive
functions.	In	fact,	because	this	part	of	the	cortex	is	very
large,	one	finds	“visual”	regions	in	the	brains	of	blind
people	that	respond	not	only	to	math	and	language,
but	also	to	letters	and	numbers	(presented	in	Braille),
objects,	places,	and	animals.30 	Most	remarkable,	in



spite	of	such	radical	differences	in	sensory	experience,
these	category-selective	areas	tend	to	be	located	at	the
same	place	in	the	cortex	of	sighted	and	blind
individuals.	For	instance,	the	region	of	the	brain	that
responds	to	written	words	is	located	at	exactly	the
same	place	in	a	blind	person	as	it	is	in	a	sighted	reader
—the	only	difference	is	that	it	responds	to	Braille	rather
than	to	printed	letters.	Once	again,	the	function	of	this
region	seems	to	be	largely	determined	by	its
genetically	controlled	connections	to	language	areas,	in
addition,	perhaps,	to	other	innate	properties,	and
therefore	does	not	change	when	sensory	inputs	do.31

The	blind	entertain	the	very	same	categories,	ideas,
and	concepts	as	sighted	people—using	very	similar
brain	regions.
The	neuronal	recycling	view	of	mathematics	is	not

supported	solely	by	the	fact	that	the	most	elementary
concepts	(1	+	1	=	2)	and	the	most	advanced
mathematical	ideas	(e−iπ	+	1	=	0)	make	use	of	the	same
brain	regions.	Other	discoveries,	of	a	purely
psychological	nature,	indicate	that	the	mathematics	we
learn	in	school	is	based	on	the	recycling	of	old	circuits
devoted	to	approximate	quantities.
Think	of	the	number	five.	Right	now,	your	brain	is

reactivating	a	representation	of	an	approximate
quantity	close	to	four	and	six	and	far	from	one	and	nine
—you	are	activating	number	neurons	very	similar	to



those	found	in	other	primates,	with	a	tuning	curve	that
peaks	around	five,	but	also	with	weights	in	the	nearby
quantities	four	and	six.	The	fuzzy	tuning	curve	of	those
neurons	is	the	main	reason	why	it	is	hard,	at	a	glance,	to
know	if	a	set	of	objects	contains	exactly	four,	five,	or	six
items.	Now,	please	decide	if	five	is	larger	or	smaller
than	six.	It	seems	instantaneous—you	get	to	the	correct
answer	(smaller)	in	an	instant—and	yet,	experiments
actually	show	that	your	answer	is	influenced	by	the
approximate	quantities:	you	are	much	slower	when	the
numbers	are	close,	like	five	and	six,	than	when	they	are
further	apart,	like	five	and	nine,	and	you	also	make
more	errors.	This	distance	effect32 	is	one	of	the
signatures	of	an	ancient	representation	of	numbers	that
you	recycled	when	you	learned	to	count	and	calculate.
No	matter	how	much	you	try	focusing	on	the	symbols
themselves,	your	brain	can’t	help	but	activate	the	neural
representations	of	these	two	quantities,	which	overlap
more	the	closer	they	are.	Although	you	are	trying	to
think	of	“exactly	five,”	using	all	the	symbolic	knowledge
that	you	acquired	at	school,	your	behavior	betrays	the
fact	that	this	knowledge	recycles	an	evolutionarily	older
representation	of	approximate	quantity.	Even	when	you
simply	have	to	decide	whether	two	numbers	such	as
eight	and	nine	are	the	same	or	different,	which	should
be	immediate,	you	continue	to	be	influenced	by	the
distance	between	them—and,	interestingly,	exactly	the



same	finding	applies	to	monkeys	who	have	learned	to
recognize	the	symbols	of	Arabic	numerals.33

When	we	subtract	two	numbers,	say,	9	−	6,	the	time
that	we	take	is	directly	proportional	to	the	size	of	the
subtracted	number34 —so	it	takes	longer	to	perform	9
−	6	than,	say,	9	−	4	or	9	−	2.	Everything	happens	as	if
we	have	to	mentally	move	along	the	number	line,
starting	from	the	first	number	and	taking	as	many	steps
as	the	second	number:	the	further	we	have	to	go,	the
longer	we	take.	We	do	not	crunch	symbols	like	a	digital
computer;	instead,	we	use	a	slow	and	serial	spatial
metaphor,	motion	along	the	number	line.	Likewise,
when	we	think	of	a	price,	we	cannot	help	but	attribute
to	it	a	fuzzier	value	when	the	number	gets	larger—a
remnant	of	our	primate-based	number	sense,	whose
precision	decreases	with	number	size.35 	This	is	why,
against	all	rationality,	when	we	negotiate,	we	are	ready
to	give	up	a	few	thousand	dollars	on	the	price	of	an
apartment	and,	the	same	day,	bargain	a	few	quarters
on	the	price	of	bread:	the	level	of	imprecision	that	we
tolerate	is	proportional	to	a	number’s	value,	for	us	just
as	for	macaques.
And	the	list	goes	on:	parity,	negative	numbers,

fractions	…	all	these	concepts	are	demonstrably
grounded	in	the	representation	of	quantities	that	we
inherit	from	evolution.36 	Unlike	a	digital	computer,	we
are	unable	to	manipulate	symbols	in	the	abstract:	we



always	grind	them	in	concrete	and	often	approximate
quantities.	The	persistence	of	such	analog	effects	in	an
educated	brain	betrays	the	ancient	roots	of	our	concept
of	numbers.
Approximate	numbers	are	one	of	the	old	pillars	on

which	the	construction	of	mathematics	is	founded.
However,	education	also	leads	to	considerable
enrichment	of	this	original	number	concept.	When	we
learn	to	count	and	calculate,	the	mathematical	symbols
that	we	acquire	allow	us	to	perform	precise
computations.	This	is	a	revolution:	for	millions	of	years,
evolution	had	been	content	with	fuzzy	quantities.
Symbol	learning	is	a	powerful	factor	for	change:	with
education,	all	our	brain	circuits	are	repurposed	to	allow
for	the	manipulation	of	exact	numbers.
Number	sense	is	certainly	not	the	only	foundation	of

mathematics.	As	we	saw	earlier,	we	also	inherit	from	our
evolution	a	sense	of	space,	with	its	own	specialized
neural	circuits	containing	place,	grid,	and	head
direction	cells.	We	also	have	a	sense	of	shape,	which
allows	any	toddler	to	distinguish	rectangles,	squares,
and	triangles.	In	a	way	that	is	not	yet	fully	understood,
under	the	influence	of	symbols	such	as	words	and
numbers,	all	these	concepts	are	recycled	when	we	learn
mathematics.	The	human	brain	manages	to	recombine
them,	in	a	language	of	thought,	in	order	to	form	new
concepts.37 	The	basic	building	blocks	that	we	inherit



from	our	evolutionary	history	become	the	foundational
primitives	of	a	new,	productive	language	in	which
mathematicians	write	new	pages	every	day.

READING	RECYCLES	THE	CIRCUITS	OF	VISION	AND	SPOKEN
LANGUAGE

What	about	learning	to	read?	Reading	is	yet	another
example	of	neuronal	recycling:	to	read,	we	reuse	a	vast
set	of	brain	areas	that	are	initially	dedicated	to	vision
and	spoken	language.	In	my	book	Reading	in	the
Brain,38 	I	describe,	in	detail,	the	circuits	of	literacy.
When	we	learn	to	read,	a	subset	of	our	visual	regions
becomes	specialized	in	recognizing	strings	of	letters
and	sends	them	to	spoken	language	areas.	As	a	result,
in	any	good	reader,	written	words	end	up	being
processed	exactly	as	spoken	words:	literacy	creates	a
new	visual	gateway	to	our	language	circuits.
Long	before	children	learn	how	to	read,	they

obviously	possess	a	sophisticated	visual	system	that
allows	them	to	recognize	and	name	objects,	animals,
and	people.	They	can	recognize	any	image	regardless
of	its	size,	position,	or	orientation	in	3-D	space,	and
they	know	how	to	associate	a	name	to	it.	Reading
recycles	part	of	this	preexisting	picture	naming	circuit.
The	acquisition	of	literacy	involves	the	emergence	of	a
region	of	the	visual	cortex	that	my	colleague	Laurent
Cohen	and	I	have	dubbed	the	“visual	word	form	area.”



This	region	concentrates	our	learned	knowledge	of
letter	strings,	to	such	an	extent	that	it	can	be
considered	as	our	brain’s	“letter	box.”	It	is	this	brain
area,	for	instance,	that	allows	us	to	recognize	a	word

regardless	of	its	size,	position,	font,	or	cAsE,	whether
UPPERCASE	or	lowercase.39 	In	any	literate	person,	this
region,	which	is	located	in	the	same	spot	in	all	of	us
(give	or	take	a	few	millimeters),	serves	a	dual	role:	it	first
identifies	a	string	of	learned	characters,	and	then,
through	its	direct	connections	to	language	areas,40 	it
allows	those	characters	to	be	quickly	translated	into
sound	and	meaning.
What	would	happen	if	we	scanned	an	illiterate	child

or	adult	as	she	progressively	learned	to	read?	If	the
theory	is	correct,	then	we	should	literally	see	her	visual
cortex	reorganize.	The	neuronal	recycling	theory
predicts	that	reading	should	invade	an	area	of	the
cortex	normally	devoted	to	a	similar	function	and
repurpose	it	to	this	novel	task.	In	the	case	of	reading,
we	expect	a	competition	with	the	preexisting	function
of	the	visual	cortex,	which	is	to	recognize	all	sorts	of
objects,	bodies,	faces,	plants,	and	places.	Could	it	be
that	we	lose	some	of	the	visual	functions	that	we
inherited	from	our	evolution	as	we	learn	to	read?	Or,	at
the	very	least,	are	these	functions	massively
reorganized?



This	counterintuitive	prediction	is	precisely	what	my
colleagues	and	I	tested	in	a	series	of	experiments.	To
draw	a	complete	map	of	the	brain	regions	that	are
changed	by	literacy,	we	scanned	illiterate	adults	in
Portugal	and	Brazil,	and	we	compared	them	to	people
from	the	same	villages	who	had	had	the	good	fortune
of	learning	to	read	in	school,	either	as	children	or
adults.41 	Unsurprisingly	perhaps,	the	results	revealed
that,	with	reading	acquisition,	an	extensive	map	of
areas	had	become	responsive	to	written	words	(see
figure	14	in	the	color	insert).	Flash	a	sentence,	word	by
word,	to	an	illiterate	individual,	and	you	will	find	that
their	brain	does	not	respond	much:	activity	spreads	to
early	visual	areas,	but	it	stops	there,	because	the	letters
cannot	be	recognized.	Present	the	same	sequence	of
written	words	to	an	adult	who	has	learned	to	read,	and
a	much	more	extended	cortical	circuit	now	lights	up,	in
direct	proportion	to	the	person’s	reading	score.	The
areas	activated	include	the	letter	box	area,	in	the	left
occipitotemporal	cortex,	as	well	as	all	the	classical
language	regions	associated	with	language
comprehension.	Even	the	earliest	visual	areas	increase
their	response:	with	reading	acquisition,	they	seem	to
become	attuned	to	the	recognition	of	small	print.42

The	more	fluent	a	person	is,	the	more	these	regions	are
activated	by	written	words,	and	the	more	they
strengthen	their	links:	as	reading	becomes	increasingly



automatic,	the	translation	of	letters	into	sounds	speeds
up.
But	we	can	also	ask	the	opposite	question:	Are	there

regions	that	are	more	active	among	bad	readers	and
whose	activity	decreases	as	one	learns	to	read?	The
answer	is	positive:	in	illiterates,	the	brain’s	responses	to
faces	are	more	intense.	The	better	we	read,	the	more
this	activity	decreases	in	the	left	hemisphere,	at	the
exact	place	in	the	cortex	where	written	words	find	their
niche—the	brain’s	letter	box	area.	It’s	as	if	the	brain
needs	to	make	room	for	letters	in	the	cortex,	so	the
acquisition	of	reading	interferes	with	the	prior	function
of	this	region,	which	is	the	recognition	of	faces	and
objects.	But,	of	course,	since	we	do	not	forget	how	to
recognize	faces	when	we	learn	to	read,	this	function	is
not	just	chased	out	of	the	cortex.	Rather,	we	have	also
observed	that,	with	literacy,	the	response	to	faces
increases	in	the	right	hemisphere.	Driven	out	of	the	left
hemisphere,	which	is	the	seat	of	language	and	reading
for	most	of	us,	faces	take	refuge	on	the	other	side.43

We	first	made	this	observation	in	literate	and	illiterate
adults,	but	we	quickly	replicated	our	results	in	children
who	were	learning	to	read.44 	As	soon	as	a	child	begins
to	read,	the	visual	word	form	area	begins	to	respond	in
the	left	hemisphere.	Meanwhile	its	symmetrical
counterpart,	in	the	right	hemisphere,	strengthens	its
response	to	faces	(see	figure	15	in	the	color	insert).	The



effect	is	so	powerful	that,	for	a	given	age,	just	by
examining	the	brain	activity	evoked	by	faces,	a
computer	algorithm	can	correctly	decide	whether	a
child	has	or	has	not	yet	learned	to	read.	And	when	a
child	suffers	from	dyslexia,	these	regions	do	not
develop	normally—neither	on	the	left,	where	the	visual
word	form	area	fails	to	emerge,	nor	on	the	right,	where
the	fusiform	cortex	fails	to	develop	a	strong	response	to
faces.45 	Reduced	activity	of	the	left	occipitotemporal
cortex	to	written	words	is	a	universal	marker	of	reading
difficulties	in	all	countries	where	it	has	been	tested.46



In	agreement	with	the
neuronal	recycling
hypothesis,	learning	to
read	competes	with	the
previous	functions	of	the
visual	cortex—in	this
case,	face	recognition.
With	increasing	levels	of
literacy,	from	pure
illiterates	to	expert
readers,	the	activation
evoked	by	written	words
increases	in	the	left



hemisphere—and	the
activation	evoked	by
faces	moves	from	the
left	hemisphere	to	the
right.

Recently,	we	got	permission	to	conduct	a	bold
experiment.	We	wanted	to	see	the	reading	circuits
emerge	in	individual	children—and	to	this	aim,	we
brought	the	same	children	back	to	our	brain-imaging
center	every	two	months,	from	the	end	of	kindergarten
through	the	end	of	first	grade.	The	results	lived	up	to
our	expectations.	The	first	time	we	scanned	these
children,	there	was	not	much	to	be	seen:	as	long	as	the
children	had	not	yet	learned	how	to	read,	their	cortex
responded	selectively	to	objects,	faces,	and	houses,	but
not	to	letters.	After	two	months	of	schooling,	however,
a	specific	response	to	written	words	appeared,	at	the
same	exact	location	as	in	adults:	the	left
occipitotemporal	cortex.	Very	slowly,	the	representation
of	faces	changed:	as	the	children	became	more	and
more	literate,	face	responses	increased	in	the	right
hemisphere,	in	direct	proportion	to	reading	scores.
Once	again,	in	agreement	with	the	neuronal	recycling
hypothesis,	we	could	see	reading	acquisition	compete
with	the	prior	function	of	the	left	occipitotemporal
cortex,	the	visual	recognition	of	faces.



We	realized	while	doing	this	work	that	this
competition	could	be	explained	in	two	different	ways.
The	first	possibility	is	what	we	called	the	“knockout
model”:	from	birth	on,	faces	settle	in	the	visual	cortex
of	the	left	hemisphere,	and	learning	to	read	later	knocks
them	straight	out	into	the	right	hemisphere.	The	second
possibility	is	what	we	termed	the	“blocking	model”:	the
cortex	develops	slowly,	gradually	growing	specialized
patches	for	faces,	places,	and	objects;	and	when	letters
enter	this	developing	landscape,	they	take	over	part	of
the	available	territory	and	prevent	the	expansion	of
other	visual	categories.
So,	does	literacy	lead	to	a	knockout	or	a	blockade	of

the	cortex?	Our	experiments	suggest	the	latter:
learning	to	read	blocks	the	growth	of	face-recognition
areas	in	the	left	hemisphere.	We	witnessed	this
blockade	thanks	to	the	MRI	scans	that	we	acquired
every	two	months	from	the	children	who	were	learning
to	read.47 	At	this	age,	around	six	or	seven,	cortical
specialization	is	still	far	from	complete.	A	few	patches
are	already	dedicated	to	faces,	objects,	and	places,	but
there	are	also	many	cortical	sites	that	have	not	yet
specialized	for	any	given	category.	And	we	could
visualize	their	progressive	specialization:	when	children
entered	first	grade	and	quickly	began	to	read,	letters
invaded	one	of	those	poorly	specified	regions	and
recycled	it.	Contrary	to	what	I	initially	thought,	letters



do	not	completely	overrun	a	preexisting	face	patch;
they	move	in	right	next	door,	in	a	free	sector	of	cortex,
a	bit	like	an	aggressive	supermarket	setting	up	shop
right	next	to	a	small	grocery	store.	The	expansion	of
one	stops	the	other—and	because	letters	settle	down	in
the	left	hemisphere,	which	is	dominant	for	language,
faces	have	no	choice	but	to	move	to	the	right	side.



Learning	is	easier	in	childhood,	while	the
cortex	is	still	malleable.	Before	a	young	child
goes	to	school,	some	visual	regions	of	the
brain	have	already	specialized	in	recognizing
objects,	faces,	and	places—but	there	are	still
large	patches	with	little	or	no	specialization
(symbolized	by	empty	hexagons).	Learning	to
read	invades	these	labile	circuits	and	blocks
the	growth	of	other	categories	of	objects.	If	a
child	does	not	learn	to	read,	those	regions
become	involved	in	recognizing	faces	and
objects,	and	gradually	lose	their	ability	to
learn	letters.



In	brief,	the	ventral	visual	system	is	still	undergoing
major	reorganization	during	the	early	school	years.	The
fact	that	our	schools	typically	teach	children	to	read
between	the	ages	of	six	and	eight	nicely	dovetails	with
the	evidence	for	intense	brain	plasticity	during	this	time
period.	We	have	organized	our	education	system	so
that	it	efficiently	takes	advantage	of	a	sensitive	period
when	the	visual	cortex	is	particularly	pliable.	While	its
overall	architecture	is	highly	constrained	from	birth,	the
human	inferotemporal	cortex	possesses	the	remarkable
ability	to	adapt	to	various	shapes	and	learn	all	kinds	of
images.	When	exposed	to	thousands	of	written	words,
this	region	recycles	itself	for	this	new	activity,	in	a
specific	sector	which	happens	to	be	innately	connected
to	language	circuits.
As	we	get	older,	our	visual	cortex	seems	to	gradually

freeze	and	lose	the	ability	to	tune	to	new	images.	The
progressive	closure	of	the	sensitive	period	makes	it
more	and	more	difficult	for	the	cortex	to	efficiently
recognize	letters	and	their	combinations.	My	colleagues
and	I	studied	two	people	who	tried	to	learn	to	read	as
adults:	one	of	them	had	never	had	the	chance	to	go	to
school,	while	the	other	had	suffered	a	small	stroke	in
the	visual	word	form	area,	rendering	him	fully
“alexic”—unable	to	read.	We	scanned	them	regularly
for	two	years.48 	Their	progress	was	incredibly	slow.
The	first	participant	eventually	developed	a	specialized



region	for	letters,	but	this	growth	did	not	affect	the	face
area—the	circuits	for	face	recognition	had	been
imprinted	in	his	brain	and	seemed	no	longer	able	to
move.	Our	stroke	patient,	on	the	other	hand,	never
managed	to	re-create	a	new	“letter	box”	in	his	visual
cortex.	His	reading	improved	but	remained	slow	and
similar	to	the	laborious	deciphering	of	a	novice	reader
—being	an	adult,	he	was	missing	the	neuronal	plasticity
necessary	to	recycle	part	of	his	cortex	into	an
automated	reading	machine.

MUSIC,	MATH,	AND	FACES

The	conclusion	is	simple:	to	profoundly	recycle	our
visual	cortex	and	become	excellent	readers,	we	must
take	advantage	of	the	period	of	maximum	plasticity	that
early	childhood	offers.	Our	research	shows	several	other
examples.	Take	musical	reading:	a	musician	who
learned	to	read	sheet	music	at	an	early	age	has
practically	double	the	surface	area	of	his	visual	cortex
dedicated	to	musical	symbols,	compared	with	someone
who	has	never	learned	music.49 	This	massive	growth
occupies	space	on	the	surface	of	the	cortex,	and	it
seems	to	dislodge	the	visual	word	form	area	from	its
usual	place:	in	musicians,	the	cortical	region	that
responds	to	letters,	the	brain’s	letter	box,	is	displaced
by	nearly	one	centimeter	from	its	normal	position	in
nonmusicians.



Another	example	is	our	varying	abilities	to	decode
mathematical	equations.	An	accomplished
mathematician	must	be	able	to	recognize,	at	a	glance,
expressions	as	obscure	as	

,
or	 ,	just	like	we	read	a	sentence	in
a	novel.	I	once	attended	a	conference	where	the
brilliant	French	mathematician	Alain	Connes	(another
Fields	Medal	winner)	exhibited	an	extraordinarily	dense
equation	that	was	twenty-five	lines	long.	He	explained
that	this	all-encompassing	mathematical	expression
captured	all	the	physical	effects	of	all	known	elementary
particles.	A	second	mathematician	pointed	his	finger
and	said,	“Isn’t	there	an	error	on	line	thirteen?”	“No,”
Connes	immediately	answered	without	losing	his
composure,	“because	the	corresponding	compensating
term	is	right	there	on	line	fourteen!”
How	is	this	remarkable	knack	for	complex	formulas

reflected	in	the	brains	of	mathematicians?	Brain
imaging	shows	that	these	mathematical	objects	invade
the	lateral	occipital	regions	of	both	hemispheres—after
math	training,	these	regions	respond	to	algebraic
expressions	much	more	so	than	in	non-mathematicians.
And,	once	again,	we	witness	a	competition	with	faces:
this	time,	the	patches	of	face-responsive	cortex	wane
away	in	both	hemispheres.50 	In	other	words,	while
literacy	merely	drives	faces	out	of	the	left	hemisphere



and	forces	them	to	move	over	to	the	right	hemisphere,
intense	practice	with	numbers	and	equations	interferes
with	the	representation	of	faces	on	both	sides,	leading
to	a	global	shrinkage	of	the	visual	face-recognition
circuitry.
It	is	tempting	to	relate	this	finding	to	the	famous

myth	of	the	eccentric	mathematician,	uninterested	in
anything	other	than	his	equations	and	unable	to
recognize	his	neighbor,	his	dog,	or	even	his	reflection	in
the	mirror.	There	is,	indeed,	an	abundance	of
anecdotes	and	jokes	about	mindless	mathematicians.
For	instance,	what’s	the	difference	between	an	introvert
mathematician	and	an	extrovert	mathematician?	While
he’s	talking	to	you,	the	introvert	looks	at	his	shoes.	But
the	extrovert	mathematician	looks	at	your	shoes!	…
In	reality,	we	do	not	yet	know	whether	the	reduction

in	cortical	responses	to	faces	in	math	buffs	is	directly
related	to	their	supposed	lack	of	social	competence
(which,	I	should	say,	is	more	of	a	myth	than	a	reality—
many	mathematicians	are	wonderfully	at	ease	in
society).	Most	crucially,	causality	remains	to	be
determined:	Does	spending	one’s	life	in	mathematical
formulas	reduce	the	response	to	faces?	Or,	on	the
contrary,	do	mathematicians	immerse	themselves	in	a
universe	of	equations	because	they	find	them	easier
than	social	interactions?	Whatever	the	answer	may	be,
cortical	competition	is	a	genuine	phenomenon,	and	the



representation	of	faces	in	our	brains	turns	out	to	be
remarkably	sensitive	to	education	and	schooling,	to	the
point	where	it	can	provide	a	reliable	marker	of	whether
a	child	has	received	training	in	math,	music,	or	reading.
Neuronal	recycling	is	a	reality.

THE	BENEFITS	OF	AN	ENRICHED	ENVIRONMENT

The	take-home	message	is	that	both	sides	of	the
nature-nurture	debate	are	right:	a	child’s	brain	is	both
structured	and	plastic.	At	birth,	all	children	are
equipped	with	a	panoply	of	specialized	circuits,	shaped
by	genes,	themselves	selected	by	tens	of	millions	of
years	of	evolution.	This	self-organization	gives	the
baby’s	brain	a	deep	intuition	of	several	major	areas	of
knowledge:	a	sense	of	the	physics	governing	objects
and	their	motion;	a	knack	for	spatial	navigation;
intuitions	of	numbers,	probability,	and	mathematics;	an
inclination	toward	other	human	beings;	and	even	a
genius	for	languages—the	blank-slate	metaphor	could
not	be	more	wrong.	And	yet	evolution	also	left	the	door
open	to	many	learning	opportunities.	Not	everything	is
predetermined	in	the	child’s	brain.	Quite	the	contrary:
the	detail	of	neural	circuits,	on	a	scale	of	a	few
millimeters,	is	largely	open	to	interactions	with	the
outside	world.
During	the	first	years	of	life,	genes	guide	an

exuberant	overproduction	of	neural	circuits:	twice	as



many	synapses	as	necessary.	In	a	way	that	we	do	not
fully	understand	yet,	this	initial	abundance	opens	up	an
immense	space	of	mental	models	of	the	world.	The
brains	of	young	children	swarm	with	possibilities	and
explore	a	much	wider	set	of	hypotheses	than	the	brains
of	adults.	Each	baby	is	open	to	all	languages,	all	scripts,
all	possible	mathematics—within	the	genetic	limits	of
our	species,	of	course.
And	the	baby’s	brain	also	comes	equipped	with

another	innate	gift:	powerful	learning	algorithms	that
select	the	most	useful	synapses	and	circuits,	thus
providing	a	second	layer	of	adaptation	of	the	organism
to	its	environment.	Thanks	to	them,	as	early	as	the	first
few	days	of	life,	the	brain	begins	to	specialize	and	settle
into	its	configuration.	The	first	regions	to	freeze	are	the
sensory	areas:	early	visual	areas	mature	in	a	few	years,
and	it	takes	less	than	twelve	months	before	the	auditory
areas	converge	toward	the	vowels	and	consonants	of
the	child’s	native	language.	As	the	sensitive	periods	of
brain	plasticity	close,	one	after	the	other,	a	few	years
suffice	for	any	of	us	to	become	a	native	of	a	given
language,	writing,	and	culture.	And	if	we	are	deprived
of	stimulation	in	a	certain	domain,	whether	we	are
orphans	in	Bucharest	or	illiterates	in	the	suburbs	of
Brasilia,	we	risk	forever	losing	our	mental	flexibility	in
this	field	of	knowledge.



This	is	not	to	say	that	intervention	is	not	worth	the
effort,	at	any	age:	the	brain	retains	some	of	its	plasticity
throughout	its	life,	especially	in	its	highest-level	regions
such	as	the	prefrontal	cortex.	However,	everything
points	to	the	optimal	effectiveness	of	early	intervention.
Whether	the	goal	is	to	make	an	owl	wear	glasses,	teach
an	adopted	child	a	second	language,	or	help	a	child
adjust	to	deafness,	blindness,	or	the	loss	of	a	whole
cerebral	hemisphere,	the	sooner,	the	better.
Our	schools	are	institutions	designed	to	make	the

most	of	the	plasticity	of	the	developing	brain.
Education	relies	heavily	on	the	spectacular	flexibility	of
the	child’s	brain	to	recycle	some	of	its	circuits	and
reorient	them	toward	new	activities	such	as	reading	or
mathematics.	When	schooling	begins	early,	it	can
transform	lives:	numerous	experiments	show	that
children	from	disadvantaged	backgrounds	who	benefit
from	early	educational	interventions	show	improved
outcomes,	even	decades	later,	in	many	domains—from
lower	crime	rates	to	higher	IQs	and	incomes	to	better
health.51

But	schooling	is	not	a	magic	pill.	Parents	and	families
also	have	a	duty	to	stimulate	children’s	brains	and
enrich	their	environments	as	much	as	possible.	All
babies	are	budding	physicists	who	love	to	experiment
with	gravity	and	falling	bodies—as	long	as	they	are
allowed	to	tinker,	build,	fail,	and	start	over	again,	rather



than	being	strapped	in	a	car	seat	for	hours.	All	children
are	nascent	mathematicians	who	love	counting,
measuring,	drawing	lines	and	circles,	assembling
shapes—provided	one	gives	them	rulers,	compasses,
paper,	and	attractive	math	puzzles.	All	infants	are	genial
linguists:	as	early	as	eighteen	months	of	age,	they	easily
acquire	ten	to	twenty	words	a	day—but	only	if	they	are
spoken	to.	Their	families	and	friends	must	feed	this
appetite	for	knowledge	and	nourish	them	with	well-
formed	sentences,	without	hesitating	to	use	a	rich
lexicon.	Many	studies	show	that	a	child’s	vocabulary	at
three	to	four	years	old	directly	depends	on	the	amount
of	child-directed	speech	they	received	during	their	first
years.	Passive	exposure	does	not	suffice:	active	one-to-
one	interactions	are	essential.52

All	research	findings	are	remarkably	convergent:
enriching	the	environment	of	a	young	child	helps	her
build	a	better	brain.	For	instance,	in	children	who	are
read	bedtime	stories	every	evening,	the	brain	circuits
for	spoken	language	are	stronger	than	in	other	toddlers
—and	the	strengthened	cortical	pathways	are	precisely
those	that	will	later	allow	them	to	understand	texts	and
formulate	complex	thoughts.53 	Likewise,	children	who
are	lucky	enough	to	be	born	into	bilingual	families,	with
each	parent	giving	them	the	wonderful	gift	of	speaking
in	their	native	language,	effortlessly	acquire	two
lexicons,	two	grammars,	and	two	cultures—at	no



cost.54 	Throughout	their	lives,	their	bilingual	brains
retain	better	abilities	for	language	processing	and	for
acquiring	a	third	or	fourth	language.	And	when	they
enter	old	age,	their	brains	seem	to	resist	the	ravages	of
Alzheimer’s	disease	for	longer.	Exposing	the
developing	brain	to	a	stimulating	environment	allows	it
to	keep	more	synapses,	larger	dendrites,	and	more
flexible	and	redundant	circuits55 —like	the	owl	that
learned	to	wear	prism	glasses	and	kept,	for	its	entire
life,	more	diversified	dendrites	and	a	greater	ability	to
switch	from	one	behavior	to	another.	Let’s	diversify	our
children’s	early	learning	portfolio:	the	blossoming	of
their	brains	depends	in	part	on	the	richness	of	the
stimulation	they	receive	from	their	environment.







The	mere	existence	of	synaptic	plasticity	does	not
suffice	to	explain	the	extraordinary	success	of	our
species.	Indeed,	such	plasticity	is	omnipresent	in	the
animal	world:	even	house	flies,	nematode	worms,	and
sea	slugs	have	modifiable	synapses.	If	Homo	sapiens
became	Homo	docens,	if	learning	became	our
ecological	niche	and	the	main	reason	behind	our	global
success,	it	is	because	the	human	brain	contains	a	whole
bag	of	additional	tricks.
During	evolution,	four	major	functions	appeared	that

maximized	the	speed	with	which	we	extracted
information	from	our	environment.	I	call	them	the	four
pillars	of	learning,	because	each	of	them	plays	an
essential	role	in	the	stability	of	our	mental
constructions:	if	even	one	of	these	pillars	is	missing	or
weak,	the	whole	structure	quakes	and	quivers.
Conversely,	whenever	we	need	to	learn,	and	learn	fast,
we	can	rely	on	them	to	optimize	our	efforts.	These
pillars	are:

Attention,	which	amplifies	the	information	we
focus	on.

Active	engagement,	an	algorithm	also	called
“curiosity,”	which	encourages	our	brain	to
ceaselessly	test	new	hypotheses.

Error	feedback,	which	compares	our	predictions
with	reality	and	corrects	our	models	of	the	world.



Consolidation,	which	renders	what	we	have
learned	fully	automated	and	involves	sleep	as	a
key	component.

Far	from	being	unique	to	humans,	these	functions	are
shared	with	many	other	species.	However,	due	to	our
social	brain	and	language	skills,	we	exploit	them	more
effectively	than	any	other	animal—especially	in	our
families,	schools,	and	universities.
Attention,	active	engagement,	error	feedback,	and

consolidation	are	the	secret	ingredients	of	successful
learning.	And	these	fundamental	components	of	our
brain	architecture	are	deployed	both	at	home	and	at
school.	Teachers	who	manage	to	mobilize	all	four
functions	in	their	students	will	undoubtedly	maximize
the	speed	and	efficiency	with	which	their	classes	can
learn.	Each	of	us	should	therefore	learn	to	master	them.







CHAPTER	7

Attention

IMAGINE	ARRIVING	AT	THE	AIRPORT	JUST	IN	TIME	TO	CATCH	A
PLANE.	Everything	in	your	behavior	betrays	the
heightened	concentration	of	your	attention.	Your	mind
on	alert,	you	look	for	the	departures	sign,	without
letting	yourself	be	distracted	by	the	flow	of	travelers;
you	quickly	scroll	through	the	list	to	find	your	flight.
Advertisements	all	around	call	out	to	you,	but	you	do
not	even	see	them—instead,	you	head	straight	for	the
check-in	counter.	Suddenly,	you	turn	around:	in	the
crowd,	an	unexpected	friend	just	called	your	first	name.
This	message,	which	your	brain	considers	a	priority,
takes	over	your	attention	and	invades	your
consciousness	…	making	you	forget	which	check-in
counter	you	were	supposed	to	go	to.
In	the	space	of	a	few	minutes,	your	brain	went

through	most	of	the	key	states	of	attention:	vigilance
and	alertness,	selection	and	distraction,	orientation	and
filtering.	In	cognitive	science,	“attention”	refers	to	all
the	mechanisms	by	which	the	brain	selects	information,
amplifies	it,	channels	it,	and	deepens	its	processing.
These	are	ancient	mechanisms	in	evolution:	whenever	a
dog	reorients	its	ears	or	a	mouse	freezes	up	upon



hearing	a	cracking	sound,	they’re	making	use	of
attention	circuits	that	are	very	close	to	ours.1

Why	did	attention	mechanisms	evolve	in	so	many
animal	species?	Because	attention	solves	a	very
common	problem:	information	saturation.	Our	brain	is
constantly	bombarded	with	stimuli:	the	senses	of	sight,
hearing,	smell,	and	touch	transmit	millions	of	bits	of
information	per	second.	Initially,	all	these	messages	are
processed	in	parallel	by	distinct	neurons—yet	it	would
be	impossible	to	digest	them	in	depth:	the	brain’s
resources	would	not	suffice.	This	is	why	a	pyramid	of
attention	mechanisms,	organized	like	a	gigantic	filter,
carries	out	a	selective	triage.	At	each	stage,	our	brain
decides	how	much	importance	it	should	attribute	to
such	and	such	input	and	allocates	resources	only	to	the
information	it	considers	most	essential.
Selecting	relevant	information	is	fundamental	to

learning.	In	the	absence	of	attention,	discovering	a
pattern	in	a	pile	of	data	is	like	looking	for	the	fabled
needle	in	a	haystack.	This	is	one	of	the	main	reasons
behind	the	slowness	of	conventional	artificial	neural
networks:	they	waste	considerable	time	analyzing	all
possible	combinations	of	the	data	provided	to	them,
instead	of	sorting	out	the	information	and	focusing	on
the	relevant	bits.	It	was	only	in	2014	that	two
researchers,	Canadian	Yoshua	Bengio	and	Korean
Kyunghyun	Cho,	showed	how	to	integrate	attention



into	artificial	neural	networks.2 	Their	first	model
learned	to	translate	sentences	from	one	language	to
another.	They	showed	that	attention	brought	in
immense	benefits:	their	system	learned	better	and
faster	because	it	managed	to	focus	on	the	relevant
words	of	the	original	sentence	at	each	step.
Very	quickly,	the	idea	of	learning	to	pay	attention

spread	like	wildfire	in	the	field	of	artificial	intelligence.
Today,	if	artificial	systems	manage	to	successfully	label
a	picture	(“A	woman	throwing	a	Frisbee	in	a	park”),	it	is
because	they	use	attention	to	channel	the	information
by	focusing	a	spotlight	on	each	relevant	part	of	the
image.	When	describing	the	Frisbee,	the	network
concentrates	all	its	resources	on	the	corresponding
pixels	of	the	image	and	temporarily	removes	all	those
which	correspond	to	the	person	and	the	park—it	will
return	to	them	later.3 	Nowadays,	any	sophisticated
artificial	intelligence	system	no	longer	connects	all
inputs	with	all	outputs—it	knows	that	learning	will	be
faster	if	such	a	plain	network,	where	every	pixel	of	the
input	has	a	chance	to	predict	any	word	at	the	output,	is
replaced	by	an	organized	architecture	where	learning	is
broken	down	into	two	modules:	one	that	learns	to	pay
attention,	and	another	that	learns	to	name	the	data
filtered	by	the	first.



The	first	pillar	of	learning	is
attention,	a	mechanism	so
fundamental	that	it	is	now	being
integrated	into	most
contemporary	artificial	neural
networks.	Here,	the	machine
learns	to	find	the	words	to
describe	an	image.	Selective
attention	acts	as	a	spotlight	that
lights	up	certain	areas	of	the



image	(in	white	on	the	right)	and
discards	everything	else.	At	any
given	moment,	attention	thus
concentrates	all	the	learning
power	on	a	selected	data	set.

Attention	is	essential,	but	it	may	result	in	a	problem:
if	attention	is	misdirected,	learning	can	get	stuck.4 	If	I
don’t	pay	attention	to	the	Frisbee,	this	part	of	the
image	is	wiped	out:	processing	goes	on	as	if	it	did	not
exist.	Information	about	it	is	discarded	early	on,	and	it
remains	confined	to	the	earliest	sensory	areas.
Unattended	objects	cause	only	a	modest	activation	that
induces	little	or	no	learning.5 	This	is	utterly	different
from	the	extraordinary	amplification	that	occurs	in	our
brain	whenever	we	pay	attention	to	an	object	and
become	aware	of	it.	With	conscious	attention,	the
discharges	of	the	sensory	and	conceptual	neurons	that
code	for	an	object	are	massively	amplified	and
prolonged,	and	their	messages	propagate	into	the
prefrontal	cortex,	where	whole	populations	of	neurons
ignite	and	fire	for	a	long	time,	well	beyond	the	original
duration	of	the	image.6 	Such	a	strong	surge	of	neural
firing	is	exactly	what	synapses	need	in	order	to	change
their	strength—what	neuroscientists	call	“long-term
potentiation.”	When	a	pupil	pays	conscious	attention
to,	say,	a	foreign-language	word	that	the	teacher	has
just	introduced,	she	allows	that	word	to	deeply



propagate	into	her	cortical	circuits,	all	the	way	into	the
prefrontal	cortex.	As	a	result,	that	word	has	a	much
better	chance	of	being	remembered.	Unconscious	or
unattended	words	remain	largely	confined	to	the
brain’s	sensory	circuits,	never	getting	a	chance	to	reach
the	deeper	lexical	and	conceptual	representations	that
support	comprehension	and	semantic	memory.
This	is	why	every	student	should	learn	to	pay

attention—and	also	why	teachers	should	pay	more
attention	to	attention!	If	students	don’t	attend	to	the
right	information,	it	is	quite	unlikely	that	they	will	learn
anything.	A	teacher’s	greatest	talent	consists	of
constantly	channeling	and	capturing	children’s	attention
in	order	to	properly	guide	them.
Attention	plays	such	a	fundamental	role	in	the

selection	of	relevant	information	that	it	is	present	in
many	different	circuits	in	the	brain.	American
psychologist	Michael	Posner	distinguishes	at	least	three
major	attention	systems:

1.	 Alerting,	which	indicates	when	to	attend,	and
adapts	our	level	of	vigilance.

2.	 Orienting,	which	signals	what	to	attend	to,	and
amplifies	any	object	of	interest.

3.	 Executive	attention,	which	decides	how	to
process	the	attended	information,	selects	the
processes	that	are	relevant	to	a	given	task,	and
controls	their	execution.



These	systems	massively	modulate	brain	activity	and
can	therefore	facilitate	learning,	but	also	point	it	in	the
wrong	direction.	Let	us	examine	them	one	by	one.

ALERTING:	THE	AWAKENING	OF	THE	BRAIN

The	first	attention	system,	perhaps	the	oldest	in
evolution,	tells	us	when	to	be	on	the	watch.	It	sends
warning	signals	that	mobilize	the	entire	body	when
circumstances	require	it.	When	a	predator	approaches
or	when	a	strong	emotion	overwhelms	us,	a	whole
series	of	subcortical	nuclei	immediately	increases	the
wakefulness	and	vigilance	of	the	cortex.	This	system
dictates	a	massive	and	diffuse	release	of
neuromodulators	such	as	serotonin,	acetylcholine,	and
dopamine	(see	figure	16	in	the	color	insert).	Through
long-range	axons	with	many	spread-out	branches,
these	alerting	messages	reach	virtually	the	entire
cortex,	greatly	modulating	cortical	activity	and	learning.
Some	researchers	speak	of	a	“now	print”	signal,	as	if
these	messages	directly	tell	the	cortex	to	commit	the
current	contents	of	neural	activity	into	memory.
Animal	experiments	show	that	the	firing	of	this

warning	system	can	indeed	radically	alter	cortical	maps
(see	figure	16	in	the	color	insert).	The	American
neurophysiologist	Michael	Merzenich	conducted
several	experiments	in	which	the	alerting	system	of



mice	was	tricked	into	action	by	electrical	stimulation	of
their	subcortical	dopamine	or	acetylcholine	circuits.	The
outcome	was	a	massive	shift	in	cortical	maps.	All	the
neurons	that	happened	to	be	activated	at	that	moment,
even	if	they	had	no	objective	importance,	were	subject
to	intense	amplification.	When	a	sound,	for	instance,	a
high-pitched	tone,	was	systematically	associated	with	a
flash	of	dopamine	or	acetylcholine,	the	mouse’s	brain
became	heavily	biased	toward	this	stimulus.	As	a	result,
the	whole	auditory	map	was	invaded	by	this	arbitrary
note.	The	mouse	became	better	and	better	at
discriminating	sounds	close	to	this	sensitive	note,	but	it
partially	lost	the	ability	to	represent	other	frequencies.7

It	is	remarkable	that	such	cortical	plasticity,	induced
by	tampering	with	the	alerting	system,	can	occur	even
in	adult	animals.	Analysis	of	the	circuits	involved	shows
that	neuromodulators	such	as	serotonin	and
acetylcholine—particularly	via	the	nicotinic	receptor
(sensitive	to	nicotine,	another	major	player	in	arousal
and	alertness)—modulate	the	firing	of	cortical	inhibitory
interneurons,	tipping	the	balance	between	excitation
and	inhibition.8 	Remember	that	inhibition	plays	a	key
role	in	the	closing	of	sensitive	periods	for	synaptic
plasticity.	Disinhibited	by	the	alerting	signals,	cortical
circuits	seem	to	recover	some	of	their	juvenile	plasticity,
thus	reopening	the	sensitive	period	for	signals	that	the
mouse	brain	labels	as	crucial.



What	about	Homo	sapiens?	It	is	tempting	to	think
that	a	similar	reorganization	of	cortical	maps	occurs
every	time	a	composer	or	a	mathematician	passionately
dives	into	their	chosen	field,	especially	when	their
passion	starts	at	an	early	age.	A	Mozart	or	a	Ramanujan
is	perhaps	so	electrified	by	fervor	that	his	brain	maps
become	literally	invaded	with	mental	models	of	music
or	math.	Furthermore,	this	may	apply	not	only	to
geniuses,	but	to	anyone	passionate	in	their	work,	from	a
manual	worker	to	a	rocket	scientist.	By	allowing	cortical
maps	to	massively	reshape	themselves,	passion	breeds
talent.
Even	though	not	everyone	is	a	Mozart,	the	same

brain	circuits	of	alertness	and	motivation	are	present	in
all	people.	What	circumstances	of	daily	life	would
mobilize	these	circuits?	Do	they	activate	only	in
response	to	trauma	or	strong	emotions?	Maybe	not.
Some	research	suggests	that	video	games,	especially
action	games	that	play	with	life	and	death,	provide	a
particularly	effective	means	of	engaging	our	attentional
mechanisms.	By	mobilizing	our	alerting	and	reward
systems,	video	games	massively	modulate	learning.	The
dopamine	circuit,	for	example,	fires	when	we	play	an
action	game.9 	Psychologist	Daphné	Bavelier	has
shown	that	this	translates	into	rapid	learning.10 	The
most	violent	action	games	seem	to	have	the	most
intense	effects,	perhaps	because	they	most	strongly



mobilize	the	brain’s	alerting	circuits.	Ten	hours	of
game-play	suffice	to	improve	visual	detection,	refine
the	rapid	estimation	of	the	number	of	objects	on	the
screen,	and	expand	the	capacity	to	concentrate	on	a
target	without	being	distracted.	A	video	game	player
manages	to	make	ultrafast	decisions	without
compromising	his	or	her	performance.
Parents	and	teachers	complain	that	today’s	children,

plugged	into	computers,	tablets,	consoles,	and	other
devices,	constantly	zap	from	one	activity	to	the	next
and	have	lost	the	capacity	to	concentrate—but	this	is
untrue.	Far	from	reducing	our	ability	to	concentrate,
video	games	can	actually	increase	it.	In	the	future,	will
they	help	us	remobilize	synaptic	plasticity	in	adults	and
children	alike?	Undoubtedly,	they	are	a	powerful
stimulant	of	attention,	which	is	why	my	laboratory	has
developed	a	whole	range	of	educational	tablet	games
for	math	and	reading,	based	on	cognitive	science
principles.11

Video	games	also	have	their	dark	side:	they	present
well-known	risks	of	social	isolation,	time	loss,	and
addiction.	Fortunately,	there	are	many	other	ways	to
unlock	the	effects	of	the	alerting	system	while	also
drawing	on	the	brain’s	social	sense.	Teachers	who
captivate	their	students,	books	that	draw	in	their
readers,	and	films	and	plays	that	transport	their
audiences	and	immerse	them	in	real-life	experiences



probably	provide	equally	powerful	alerting	signals	that
stimulate	our	brain	plasticity.

ORIENTING:	THE	BRAIN’S	FILTER

The	second	attention	system	in	the	brain	determines
what	we	should	attend	to.	This	orienting	system	acts	as
a	spotlight	on	the	outside	world.	From	the	millions	of
stimuli	that	bombard	us,	it	selects	those	to	which	we
should	allocate	our	mental	resources,	because	they	are
urgent,	dangerous,	appealing	…	or	merely	relevant	to
our	present	goals.
The	founding	father	of	American	psychology,	William

James	(1842–1910),	in	his	The	Principles	of	Psychology
(1890),	best	defined	this	function	of	attention:	“Millions
of	items	of	the	outward	order	are	present	to	my	senses
which	never	properly	enter	into	my	experience.	Why?
Because	they	have	no	interest	for	me.	My	experience	is
what	I	agree	to	attend	to.	Only	those	items	which	I
notice	shape	my	mind.”
Selective	attention	operates	in	all	sensory	domains,

even	the	most	abstract.	For	example,	we	can	pay
attention	to	the	sounds	around	us:	dogs	move	their
ears,	but	for	us	humans,	only	an	internal	pointer	in	our
brain	moves	and	tunes	in	to	whatever	we	decide	to
focus	on.	At	a	noisy	cocktail	party,	we	are	able	to	select
one	out	of	ten	conversations	based	on	voice	and
meaning.	In	vision,	the	orienting	of	attention	is	often



more	obvious:	we	generally	move	our	head	and	eyes
toward	whatever	attracts	us.	By	shifting	our	gaze,	we
bring	the	object	of	interest	into	our	fovea,	which	is	an
area	of	very	high	sensitivity	in	the	center	of	our	retina.
However,	experiments	show	that	even	without	moving
our	eyes,	we	can	still	pay	attention	to	any	place	or	any
object,	wherever	it	is,	and	amplify	its	features.12 	We
can	even	attend	to	one	of	several	superimposed
drawings,	just	like	we	attend	to	one	of	several
simultaneous	conversations.	And	there	is	nothing
stopping	you	from	paying	attention	to	the	color	of	a
painting,	the	shape	of	a	curve,	the	speed	of	a	runner,
the	style	of	a	writer,	or	the	technique	of	a	painter.	Any
representation	in	our	brains	can	become	the	focus	of
attention.
In	all	these	cases,	the	effect	is	the	same:	the	orienting

of	attention	amplifies	whatever	lies	in	its	spotlight.	The
neurons	that	encode	the	attended	information	increase
their	firing,	while	the	noisy	chattering	of	other	neurons
is	squashed.	The	impact	is	twofold:	attention	makes	the
attended	neurons	more	sensitive	to	the	information	that
we	consider	relevant,	but,	above	all,	it	increases	their
influence	on	the	rest	of	the	brain.	Downstream	neural
circuits	echo	the	stimulus	to	which	we	lend	our	eyes,
ears,	or	mind.	Ultimately,	vast	expanses	of	cortex
reorient	to	encode	whatever	information	lies	at	the



center	of	our	attention.13 	Attention	acts	as	an	amplifier
and	a	selective	filter.
“The	art	of	paying	attention,	the	great	art,”	says	the

philosopher	Alain	(1868–1951),	“supposes	the	art	of	not
paying	attention,	which	is	the	royal	art.”	Indeed,	paying
attention	also	involves	choosing	what	to	ignore.	For	an
object	to	come	into	the	spotlight,	thousands	of	others
must	remain	in	the	shadows.	To	direct	attention	is	to
choose,	filter,	and	select:	this	is	why	cognitive	scientists
speak	of	selective	attention.	This	form	of	attention
amplifies	the	signal	which	is	selected,	but	it	also
dramatically	reduces	those	that	are	deemed	irrelevant.
The	technical	term	for	this	mechanism	is	“biased
competition”:	at	any	given	moment,	many	sensory
inputs	compete	for	our	brain’s	resources,	and	attention
biases	this	competition	by	strengthening	the
representation	of	the	selected	item	while	squashing	the
others.	This	is	where	the	spotlight	metaphor	reaches	its
limits:	to	better	light	up	a	region	of	the	cortex,	the
attentional	spotlight	of	our	brain	also	reduces	the
illumination	of	other	regions.	The	mechanism	relies	on
interfering	waves	of	electrical	activity:	to	suppress	a
brain	area,	the	brain	swamps	it	with	slow	waves	in	the
alpha	frequency	band	(between	eight	and	twelve	hertz),
which	inhibit	a	circuit	by	preventing	it	from	developing
coherent	neural	activity.



Paying	attention,	therefore,	consists	of	suppressing
the	unwanted	information—and	in	doing	so,	our	brain
runs	the	risk	of	becoming	blind	to	what	it	chooses	not
to	see.	Blind,	really?	Really.	The	term	is	fully
appropriate,	because	many	experiments,	including	the
famous	“invisible	gorilla”	experiment,14 	demonstrate
that	inattention	can	induce	a	complete	loss	of	sight.	In
this	classic	experiment,	you	are	asked	to	watch	a	short
movie	where	basketball	players,	dressed	in	black	and
white,	pass	a	ball	back	and	forth.	Your	task	is	to	count,
as	precisely	as	you	can,	the	number	of	passes	of	the
white	team.	A	piece	of	cake,	you	think—and	indeed,
thirty	seconds	later,	you	triumphantly	give	the	right
answer.	But	now	the	experimenter	asks	a	strange
question:	“Did	you	see	the	gorilla?”	The	gorilla?	What
gorilla?	We	rewind	the	tape,	and	to	your	amazement,
you	discover	that	an	actor	in	a	full-body	gorilla	costume
walked	across	the	stage	and	even	stopped	in	the
middle	to	pound	on	his	chest	for	several	seconds.	It
seems	impossible	to	miss.	Furthermore,	experiments
show	that,	at	some	point,	your	eyes	looked	right	at	the
gorilla.	Yet	you	did	not	see	it.	The	reason	is	simple:
your	attention	was	entirely	focused	on	the	white	team
and	therefore	actively	inhibited	the	distracting	players
who	were	dressed	in	black	…	gorilla	included!	Busy
with	the	counting	task,	your	mental	workspace	was
unable	to	become	aware	of	this	incongruous	creature.



The	invisible	gorilla	experiment	is	a	landmark	study	in
cognitive	science,	and	one	which	is	easily	replicated:	in
a	great	variety	of	settings,	the	mere	act	of	focusing	our
attention	blinds	us	to	unattended	stimuli.	If,	for
instance,	I	ask	you	to	judge	whether	the	pitch	of	a
sound	is	high	or	low,	you	may	become	blind	to	another
stimulus,	such	as	a	written	word	that	appears	within	the
next	fraction	of	a	second.	Psychologists	call	this
phenomenon	the	“attentional	blink”:15 	your	eyes	may
remain	open,	but	your	mind	“blinks”—for	a	short	while,
it	is	fully	busy	with	its	main	task	and	utterly	unable	to
attend	to	anything	else,	even	something	as	simple	as	a
single	word.
In	such	experiments,	we	actually	suffer	from	two

distinct	illusions.	First,	we	fail	to	see	the	word	or	the
gorilla,	which	is	bad	enough.	(Other	experiments	show
that	inattention	can	lead	us	to	miss	a	red	light	or	run
over	a	pedestrian—never	use	your	cell	phone	behind
the	wheel!)	But	the	second	illusion	is	even	worse:	we
are	unaware	of	our	own	unawareness—and,	therefore,
we	are	absolutely	convinced	that	we	have	seen	all	there
is	to	see!	Most	people	who	try	the	invisible	gorilla
experiment	cannot	believe	their	own	blindness.	They
think	that	we	played	a	trick	on	them,	for	instance	by
using	two	different	movies.	Typically,	their	reasoning	is
that	if	there	really	was	a	gorilla	in	the	video,	they	would
have	seen	it.	Unfortunately,	this	is	false:	our	attention	is



extremely	limited,	and	despite	all	our	good	will,	when
our	thoughts	are	focused	on	one	object,	other	objects
—however	salient,	amusing,	or	important—can
completely	elude	us	and	remain	invisible	to	our	eyes.
The	intrinsic	limits	of	our	awareness	lead	us	to
overestimate	what	we	and	others	can	perceive.
The	gorilla	experiment	truly	deserves	to	be	known	by

everyone,	especially	parents	and	teachers.	When	we
teach,	we	tend	to	forget	what	it	means	to	be	ignorant.
We	all	think	that	what	we	see,	everyone	can	see.	As	a
result,	we	often	have	a	hard	time	understanding	why	a
child,	despite	the	best	of	intentions,	fails	to	see,	in	the
most	literal	sense	of	the	term,	what	we	are	trying	to
teach	him.	But	the	gorilla	heeds	a	clear	message:
seeing	requires	attending.	If	students,	for	one	reason	or
another,	are	distracted	and	fail	to	pay	attention,	they
may	be	entirely	oblivious	to	their	teacher’s	message—
and	what	they	cannot	perceive,	they	cannot	learn.16

As	an	example,	consider	an	experiment	recently
performed	by	the	American	psychologist	Bruce
McCandliss	which	probed	the	role	of	attention	in
learning	to	read.17 	Is	it	better	to	pay	attention	to	the
individual	letters	of	a	word	or	to	the	overall	form	of	the
whole	word?	To	find	out,	McCandliss	and	his
colleagues	taught	adults	an	unusual	writing	system
made	up	of	elegant	curves.	The	subjects	were	first
trained	with	sixteen	words,	then	their	brain	responses



were	recorded	while	they	tried	to	read	these	sixteen
learned	words,	as	well	as	sixteen	new	words	in	the	same
script.	Unbeknownst	to	them,	however,	their	attention
was	also	being	manipulated.	Half	the	participants	were
told	to	attend	to	the	curves	as	a	whole,	because	each	of
them,	much	like	a	Chinese	character,	corresponded	to
one	word.	The	other	group	was	told	that,	in	fact,	the
curves	were	made	up	of	three	superimposed	letters,
and	that	they	would	learn	better	by	paying	attention	to
each	letter.	Thus,	the	first	group	paid	attention	on	the
whole-word	level,	while	the	second	group	attended	to
the	individual	letters,	which	had	actually	been	used	to
write	the	words.



Selective	attention	can	orient	learning	to	the
right	or	wrong	circuit.	In	this	experiment,
adults	learned	to	read	a	new	writing	system
using	either	a	phonics	approach	or	a	whole-
word	approach.	Those	who	attended	to	the
overall	shape	of	the	words	did	not	realize	that
the	words	were	made	of	letters,	even	after
three	hundred	trials.	Whole-word	attention
directed	the	learning	to	an	inappropriate
circuit	in	the	right	hemisphere	and	prevented
the	participants	from	generalizing	what	they
had	learned	to	novel	words.	When	attention
was	drawn	to	the	presence	of	letters,
however,	people	were	able	to	decipher	the
alphabet	and	to	read	novel	words,	using	the



normal	reading	circuit	located	in	the	left
ventral	visual	cortex.

What	were	the	results?	Both	groups	managed	to
remember	the	first	sixteen	words,	but	attention	radically
altered	their	ability	to	decipher	new	words.	The
participants	in	the	second	group,	focused	on	letters,
discovered	many	of	the	correspondences	between
letters	and	sounds	and	were	able	to	read	79	percent	of
the	new	words.	Furthermore,	an	examination	of	their
brains	showed	that	they	had	activated	the	normal
reading	circuitry,	localized	to	the	ventral	visual	areas	of
the	left	hemisphere.	In	the	first	group,	however,
attending	to	the	overall	word	form	completely	hindered
the	capacity	to	generalize	to	novel	items:	these
volunteers	could	not	read	any	new	words,	and	they
activated	a	totally	inappropriate	circuit	located	in	the
visual	areas	of	the	right	hemisphere.
The	message	is	clear:	attention	radically	changes

brain	activity.	Paying	attention	to	the	overall	shape	of
the	words	prevents	the	discovery	of	the	alphabetic
code	and	directs	brain	activity	toward	an	inadequate
circuit	in	the	opposite	hemisphere.	To	learn	to	read,
phonics	training	is	essential.	Only	by	attending	to	the
correspondence	between	letters	and	sounds	can	a
student	activate	the	classical	reading	circuit,	allowing
for	the	proper	type	of	learning	to	take	place.	All	first-



grade	teachers	who	teach	reading	should	be	familiar
with	this	data:	they	show	how	important	it	is	to	properly
direct	children’s	attention.	Many	converging	data
convincingly	demonstrate	the	superiority	of	such	a
phonics	approach	over	whole-word	reading.18 	When	a
child	attends	to	the	letter	level,	for	instance,	by	tracking
each	letter	with	her	finger,	from	left	to	right,	learning
becomes	much	easier.	If,	on	the	other	hand,	the	child	is
not	provided	with	any	attentional	clues	and	naively
examines	the	written	word	as	a	whole,	without
attending	to	its	internal	structure,	nothing	happens.
Attention	is	a	key	ingredient	of	successful	learning.
Above	all,	therefore,	good	teaching	requires

permanent	attention	to	children’s	attention.	Teachers
must	carefully	choose	what	they	want	children	to	attend
to,	because	only	the	items	that	lie	at	the	focus	of
attention	are	represented	in	the	brain	with	sufficient
strength	to	be	efficiently	learned.	The	other	stimuli,	the
losers	of	the	attentional	competition,	cause	little	or	no
stir	inside	the	child’s	plastic	synapses.
The	efficient	teacher	therefore	pays	close	attention	to

his	pupils’	mental	states.	By	constantly	stirring	children’s
curiosity	with	attention-grabbing	lessons,	he	ensures
that	each	class	is	a	memorable	experience.	By	tailoring
his	teaching	to	each	child’s	attention	span,	he	ensures
that	all	students	follow	the	entire	lesson.



EXECUTIVE	CONTROL:	THE	BRAIN’S	SWITCHBOARD

Our	third	and	final	attention	system	determines	how	the
attended	information	is	processed.	The	executive
control	system,	sometimes	called	the	“central
executive,”	is	a	hodgepodge	of	circuits	that	allows	us	to
choose	a	course	of	action	and	stick	to	it.19 	It	involves	a
whole	hierarchy	of	cortical	areas,	mainly	located	in	the
frontal	cortex—the	huge	mass	of	cortex	that	lies
beneath	our	forehead	and	comprises	close	to	a	third	of
the	human	brain.	Compared	with	other	primates,	our
frontal	lobes	are	enlarged,	better	connected,	and
packed	with	a	larger	number	of	neurons,	each	with	a
broader	and	more	complex	dendritic	tree.20 	It’s	no
wonder,	then,	that	human	cognitive	abilities	are	much
more	developed	than	those	of	any	other	primate—and
this	is	especially	true	at	the	highest	level	of	the
cognitive	hierarchy,	which	allows	us	to	supervise	our
mental	operations	and	become	aware	of	our	mistakes:
the	executive	control	system.21

Imagine	having	to	mentally	multiply	23	by	8.	It	is	your
executive	control	system	that	ensures	that	the	whole
series	of	relevant	mental	operations	runs	smoothly	from
beginning	to	end:	first,	focus	on	the	ones	digit	(3)	and
multiply	it	by	8,	then	store	the	result	(24)	in	memory;
now	focus	on	the	tens	digit	(2)	and	also	multiply	it	by	8
to	obtain	16,	and	remember	that	you	are	working	in	the



tens	column,	therefore	it	corresponds	to	160;	and
finally,	add	24	and	160	to	reach	the	final	result:	184.
Executive	control	is	the	switchboard	of	the	brain:	it

orients,	directs,	and	governs	our	mental	processes,
much	like	a	railroad	yardman	who	tends	the	switches	in
a	busy	railway	station	and	manages	to	bring	each	train
to	the	right	track	by	choosing	the	appropriate
orientation	for	each	switch.	The	brain’s	central
executive	is	considered	one	of	the	attention	systems
because,	like	the	others,	it	selects	from	many
possibilities—but	this	time,	from	the	available	mental
operations	rather	than	from	the	stimuli	that	reach	us.
Thus,	spatial	attention	and	executive	attention
complement	each	other.	When	we	do	mental
arithmetic,	spatial	attention	is	the	system	that	scans	the
mathematics	textbook	page	and	shines	the	spotlight	on
the	problem	23	×	8—but	it	is	executive	attention	which
then	guides	the	spotlight	step	by	step,	first	selecting
the	3	and	the	8,	then	routing	them	to	the	brain	circuits
for	multiplication,	and	so	on.	The	central	executive
activates	the	relevant	operations	and	inhibits	the
inappropriate	ones.	It	constantly	ensures	that	the
mental	program	runs	smoothly,	and	decides	when	to
change	strategies.	It	is	also	the	system	which,	within	a
specialized	subcircuit	of	the	cingulate	cortex,	detects
when	we	make	an	error,	or	when	we	deviate	from	the
goal,	and	immediately	corrects	our	action	plan.



There	is	a	close	link	between	executive	control	and
what	cognitive	scientists	call	working	memory.	In	order
to	follow	a	mental	algorithm	and	control	its	execution,
we	must	constantly	keep	in	mind	all	the	elements	of	the
ongoing	program:	intermediate	results,	steps	already
carried	out,	operations	remaining	to	be	performed	….
Thus,	executive	attention	controls	the	inputs	and	the
outputs	of	what	I	have	called	the	“global	neural
workspace”:	a	temporary	conscious	memory	within
which	we	can	maintain,	for	a	short	period,	practically
any	piece	of	information	that	seems	relevant	to	us	and
relay	it	to	any	other	module.22 	The	global	workspace
acts	as	the	brain’s	router,	the	signalman	that	decides
how,	and	in	what	order,	to	send	the	information	to	the
many	different	processors	that	our	brain	hosts.	At	this
level,	mental	operations	are	slow	and	serial:	this	is	a
system	that	processes	one	piece	of	information	at	a
time	and	is	therefore	incapable	of	doing	two	operations
at	once.	Psychologists	also	call	it	the	“central
bottleneck.”
Are	we	really	unable	to	execute	two	mental	programs

at	once?	We	are	sometimes	under	the	impression	that
we	can	simultaneously	perform	two	tasks,	or	even
follow	two	distinct	trains	of	thought—but	this	is	a	pure
illusion.	A	basic	experiment	illustrates	this	point:	Give
someone	two	very	simple	tasks—for	example,	pressing
a	key	with	the	left	hand	whenever	they	hear	a	high-



pitched	sound,	and	pressing	another	key	with	the	right
hand	if	they	see	the	letter	Y.	When	both	targets	occur
simultaneously	or	in	close	succession,	the	person
performs	the	first	task	at	a	normal	speed,	but	the
execution	of	the	second	task	is	considerably	slowed
down,	in	direct	proportion	to	the	time	spent	making	the
first	decision.23 	In	other	words,	the	first	task	delays	the
second:	while	our	global	workspace	is	busy	with	the	first
decision,	the	second	one	has	to	wait.	And	the	lag	is
huge:	it	easily	reaches	a	few	hundred	milliseconds.	If
you	are	too	concentrated	on	the	first	task,	you	may
even	miss	the	second	task	entirely.	Remarkably,
however,	none	of	us	is	aware	of	this	large	dual-task
delay—because,	by	definition,	we	cannot	be	aware	of
information	before	it	enters	our	conscious	workspace.
While	the	first	stimulus	gets	consciously	processed,	the
second	one	has	to	wait	outside	the	door,	until	the
global	workspace	is	free—but	we	have	no	introspection
of	that	waiting	time,	and	if	asked	about	it,	we	think	that
the	second	stimulus	appeared	exactly	when	we	were
finished	with	the	first,	and	that	we	processed	it	at	a
normal	speed.24

Once	again,	we	are	unaware	of	our	mental	limits
(indeed,	it	would	be	paradoxical	if	we	could	somehow
become	aware	of	our	lack	of	awareness!).	The	only
reason	we	believe	that	we	can	multitask	is	that	we	are
unaware	of	the	huge	delay	it	causes.	Thus,	many	of	us



continue	to	text	while	we	drive—in	spite	of	all	the
evidence	that	texting	is	one	of	the	most	distracting
activities	ever.	The	lure	of	the	screen	and	the	myth	of
multitasking	are	among	the	most	dangerous
fabrications	of	our	digital	society.
What	about	training?	Can	we	ever	turn	ourselves	into

genuine	multitaskers	who	do	multiple	things	at	once?
Perhaps,	but	only	with	intense	training	on	one	of	the
two	tasks.	Automatization	frees	the	conscious
workspace:	by	routinizing	an	activity,	we	can	execute	it
unconsciously,	without	tying	up	the	brain’s	central
resources.	Through	hard	practice,	for	instance,	a
professional	pianist	may	be	able	to	talk	while	playing,
or	a	typist	may	be	able	to	copy	a	document	while
listening	to	the	radio.	However,	these	are	rare
exceptions,	and	psychologists	continue	to	debate
them,	because	it	is	also	possible	that	executive
attention	quickly	switches	from	one	task	to	the	next	in
an	almost	undetectable	manner.25 	The	basic	rule
stands:	in	any	multitask	situation,	whenever	we	have	to
perform	multiple	cognitive	operations	under	the	control
of	attention,	at	least	one	of	the	operations	is	slowed
down	or	forgotten	altogether.
Because	of	this	severe	effect	of	distraction,	learning

to	concentrate	is	an	essential	ingredient	of	learning.	We
cannot	expect	a	child	or	an	adult	to	learn	two	things	at
once.	Teaching	requires	paying	attention	to	the	limits	of



attention	and,	therefore,	carefully	prioritizing	specific
tasks.	Any	distraction	slows	down	or	wastes	our	efforts:
if	we	try	to	do	several	things	at	once,	our	central
executive	quickly	loses	track.	In	this	respect,	cognitive
science	experiments	in	the	lab	converge	nicely	with
educational	findings.	For	instance,	field	experiments
demonstrate	that	an	overly	decorated	classroom
distracts	children	and	prevents	them	from
concentrating.26 	Another	recent	study	shows	that
when	students	are	allowed	to	use	their	smartphones	in
class,	their	performance	suffers,	even	months	later,
when	they	are	tested	on	the	specific	content	of	that
day’s	class.27 	For	optimal	learning,	the	brain	must
avoid	any	distraction.

LEARNING	TO	ATTEND

Executive	attention	roughly	corresponds	to	what	we	call
“concentration”	or	“self-control.”	Importantly,	this
system	is	not	immediately	available	to	children:	it	will
take	fifteen	or	twenty	years	before	their	prefrontal
cortex	reaches	its	full	maturity.	Executive	control
emerges	slowly	throughout	childhood	and	adolescence
as	our	brain,	through	experience	and	education,
gradually	learns	to	control	itself.	Much	time	is	needed
for	the	brain’s	central	executive	to	systematically	select
the	appropriate	strategies	and	inhibit	the	inadequate
ones,	all	the	while	avoiding	distraction.



Cognitive	psychology	is	full	of	examples	where
children	gradually	correct	their	mistakes	as	they
increasingly	manage	to	concentrate	and	inhibit
inappropriate	strategies.	Psychologist	Jean	Piaget	was
the	first	to	notice	this:	Very	young	children	sometimes
make	seemingly	silly	mistakes.	If,	for	example,	you	hide
a	toy	a	few	times	at	location	A,	and	then	switch	to
hiding	it	at	location	B,	babies	below	one	year	of	age
continue	to	look	for	it	at	location	A	(even	if	they	saw
perfectly	well	what	happened).	This	is	the	famous	“A-
not-B	error,”	which	led	Piaget	to	conclude	that	infants
lack	object	permanence—the	knowledge	that	an	object
continues	to	exist	when	it	is	hidden.	However,	we	now
know	that	this	interpretation	is	wrong.	Examination	of
the	babies’	eyes	shows	that	they	know	where	the
hidden	object	is.	But	they	have	trouble	resolving	mental
conflicts:	in	the	A-not-B	task,	the	routine	response	that
they	learned	on	previous	trials	tells	them	to	go	to
location	A,	while	their	more	recent	working	memory
tells	them	that,	on	the	present	trial,	they	should	inhibit
this	habitual	response	and	go	to	location	B.	Before	ten
months	of	age,	the	habit	prevails.	At	this	age,	what	is
lacking	is	executive	control,	not	object	knowledge.
Indeed,	the	A-not-B	error	disappears	around	twelve
months	of	age,	in	direct	relation	to	the	development	of
the	prefrontal	cortex.28



Another	typical	error	of	children	is	the	confusion
between	number	and	size.	Here	again,	Piaget	made	an
essential	discovery	but	got	the	interpretation	wrong.	He
found	that	young	children,	before	they	were	about
three	years	old,	had	trouble	judging	the	number	of
objects	in	a	group.	In	his	classical	number	conservation
experiments,	Piaget	first	showed	children	two	equal
rows	of	marbles,	in	one-to-one	correspondence,	such
that	even	the	youngest	children	would	agree	that	the
rows	had	the	same	number	of	marbles.	He	would	then
space	the	marbles	in	one	of	the	rows	apart:

Remarkably,	the	children	would	now	affirm	that	the
two	sets	were	unequal,	and	that	the	longer	row	had
more	objects.	This	is	a	surprisingly	silly	error—but
contrary	to	what	Piaget	thought,	it	does	not	mean	that
children	at	this	age	are	incapable	of	“conserving
number.”	As	we	have	seen,	even	newborn	babies
already	possess	an	abstract	sense	of	number,
independent	of	the	spacing	of	items	or	even	the
sensory	modality	in	which	they	are	presented.	No,	the
difficulty	arises,	once	again,	from	executive	control.
Children	must	learn	to	inhibit	a	prominent	feature	(size)
and	amplify	a	more	abstract	one	(number).	Even	in
adults,	such	selective	attention	may	fail.	For	instance,
we	all	have	a	hard	time	deciding	which	of	two	sets	is



larger	when	the	items	in	the	smaller	set	are	bigger	and
more	spread	out	in	space;	and	we	also	have	a	hard	time

choosing	the	larger	number	between	7	and	9.	What
develops	with	age	and	education	is	not	so	much	the
intrinsic	precision	of	the	number	system,	but	the	ability
to	use	it	efficiently	without	getting	distracted	by
irrelevant	cues,	such	as	density	or	size.29 	Once	again,
progress	in	such	tasks	correlates	with	the	development
of	neural	responses	in	the	prefrontal	cortex.30

I	could	multiply	the	examples:	at	all	stages	of	life	and
in	all	domains	of	knowledge,	whether	cognitive	or
emotional,	it	is	primarily	the	development	of	our
executive	control	abilities	which	allows	us	to	avoid
making	errors.31 	Let’s	try	it	on	your	own	brain:	name
the	color	of	the	ink	(black	or	white)	in	which	each	of	the
following	words	is	printed:

dog	house	well	because	sofa	too	white
black	white	black	white	black

When	you	reached	the	second	half	of	the	list,	did	the
task	become	more	difficult?	Did	you	slow	down	and
make	errors?	This	classic	effect	(which	is	even	more
striking	when	the	words	are	printed	in	color)	reflects	the
intervention	of	your	executive	control	system.	When	the
words	and	colors	conflict,	the	central	executive	must



inhibit	word	reading	to	remain	focused	on	the	task	of
naming	the	ink	color.
Now	try	solving	the	following	problem:	“Mary	has

twenty-six	marbles.	This	is	four	more	than	Gregory.
How	many	marbles	does	Gregory	have?”	Did	you	have
to	fight	the	urge	to	add	the	two	numbers?	Did	you
think	of	thirty	instead	of	the	correct	result	of	twenty-
two?	The	problem	statement	uses	the	word	“more”
even	though	you	have	to	subtract—this	is	a	trap	that
many	children	fall	into	before	they	manage	to	control
themselves	and	think	deeper	about	the	meanings	of
such	math	problems	in	order	to	select	the	relevant
arithmetic	operation.
Attention	and	executive	control	develop

spontaneously	with	the	progressive	maturation	of	the
prefrontal	cortex,	which	extends	over	the	first	two
decades	of	our	lives.	But	this	circuit,	like	all	others,	is
plastic,	and	many	studies	show	that	its	development
can	be	enhanced	by	training	and	education.32 	Because
this	system	intervenes	in	a	great	variety	of	cognitive
tasks,	many	educational	activities,	including	the	most
playful,	can	effectively	develop	executive	control.	The
American	psychologist	Michael	Posner	was	the	first	to
develop	educational	software	that	improves	young
children’s	ability	to	concentrate.	One	game,	for
instance,	forces	the	player	to	heed	the	orientation	of	a
fish	in	the	center	of	the	screen.	The	target	fish	is



surrounded	by	others	that	face	in	the	opposite
direction.	In	the	course	of	the	game,	which	consists	of
many	levels	of	increasing	difficulty,	the	child
progressively	learns	to	avoid	being	distracted	by	the
target	fish’s	neighbors—a	simple	task	that	teaches
concentration	and	inhibition.	This	is	just	one	of	many
ways	to	encourage	reflection	and	discourage
immediate,	knee-jerk	responding.

Long	before	computers	were	invented,	the	Italian
doctor	and	teacher	Maria	Montessori	(1870–1952)
noticed	how	a	variety	of	practical	activities	could
develop	concentration	in	young	children.	In	today’s
Montessori	schools,	for	example,	children	walk	along	an
ellipse	drawn	on	the	ground,	without	ever	taking	their
feet	off	the	line.	Once	they	succeed,	the	difficulty	is
raised	by	having	them	walk	with	a	spoon	in	their	mouth,
then	with	a	ping-pong	ball	in	the	spoon,	and	so	on.
Experimental	studies	suggest	that	the	Montessori
approach	has	a	positive	impact	on	many	aspects	of
child	development.33 	Other	studies	demonstrate	the
attentional	benefits	of	video	games,	meditation,	or	the
practice	of	a	musical	instrument	….	For	a	young	child,
controlling	their	body,	gaze,	and	breathing	while
coordinating	their	two	hands	can	be	an	excruciatingly



difficult	task—that	is	probably	why	playing	music	at	an
early	age	has	a	strong	impact	on	the	attention	circuits
of	the	brain,	including	a	significant	bilateral	increase	in
the	thickness	of	the	prefrontal	cortex.34



Executive	attention,	the	ability	to	concentrate	and	control
oneself,	develops	with	age	and	education.	Learning	to	play	a
musical	instrument	is	one	of	the	many	ways	to	enhance
concentration	and	self-control	from	an	early	age.	The	cortex	is
thicker	in	musicians	than	in	well-matched	nonmusicians,
particularly	the	dorsolateral	prefrontal	cortex,	which	plays	an
important	role	in	executive	control.

Training	in	executive	control	can	even	change	one’s
IQ.	This	may	come	as	a	surprise,	because	IQ	is	often
viewed	as	a	given—a	fundamental	determinant	of
children’s	mental	potential.	However,	the	intellectual
quotient	is	just	a	behavioral	ability,	and	as	such,	it	is	far
from	being	unchangeable	by	education.	Like	any	of	our
abilities,	IQ	rests	on	specific	brain	circuits	whose
synaptic	weights	can	be	changed	by	training.	What	we
call	fluid	intelligence—the	ability	to	reason	and	solve
new	problems—makes	massive	use	of	the	brain’s
executive	control	system:	both	mobilize	a	similar
network	of	brain	areas,	notably	the	dorsolateral
prefrontal	cortex.35 	Indeed,	standardized	measures	of
fluid	intelligence	resemble	the	tests	that	cognitive
psychologists	use	to	assess	executive	control:	both
emphasize	attention,	concentration,	and	the	ability	to
move	quickly	from	one	activity	to	another,	without
losing	sight	of	the	overall	goal.	And	in	fact,	training
programs	that	focus	on	working	memory	and	executive
control	cause	a	slight	increase	in	fluid	intelligence.36



These	results	are	consistent	with	previous	findings
showing	that	although	intelligence	is	not	devoid	of
genetic	determinism,	it	can	change	dramatically	in
response	to	environmental	factors,	including	education.
And	these	effects	can	be	enormous.	In	one	study,	low-
IQ	children	between	the	ages	of	four	and	six	were
adopted	in	families	with	either	a	high	or	a	low
socioeconomic	status.	At	adolescence,	those	who	had
landed	in	the	better-off	families	had	gained	twenty	IQ
points,	compared	to	only	eight	points	for	the	others.37

A	recent	meta-analysis	examined	the	effect	of
education	on	intelligence,	and	concluded	that	each
additional	year	at	school	yields	a	gain	of	one	to	five	IQ
points.38

The	current	frontier	of	research	involves	optimizing
the	effects	of	cognitive	training	and	clarifying	their
limits.	Can	the	effects	last	for	years?	How	can	we	ensure
that	they	extend	well	beyond	the	trained	tasks,	in
various	situations	throughout	life?	This	is	the	challenge,
because,	by	default,	the	brain	tends	to	develop	tricks
specific	to	each	task,	on	a	case-by-case	basis.	The
solution	probably	lies	in	the	diversification	of	learning
experiences,	and	the	best	results	seem	to	be	obtained
by	educational	programs	that	stimulate	the	core
cognitive	skills	of	working	memory	and	executive
attention	in	a	great	variety	of	contexts.



Certain	findings	make	me	particularly	optimistic.	Early
training	in	working	memory,	especially	if	done	in
kindergarten,	appears	to	have	positive	effects	on
concentration	and	success	in	many	areas,	including
those	most	directly	relevant	to	school:	reading	and
mathematics.39 	This	is	not	surprising,	since	we	have
known	for	years	that	working	memory	is	one	of	the	best
predictors	of	later	success	in	arithmetic.40 	The	effects
of	these	exercises	are	multiplied	if	we	combine	memory
training	with	more	direct	teaching	of	the	concept	of	the
“number	line”—the	essential	idea	that	numbers	are
organized	on	a	linear	axis	where	adding	or	subtracting
consists	of	moving	right	or	left.41 	All	these	educational
interventions	seem	to	be	the	most	beneficial	to	children
from	disadvantaged	backgrounds.	For	families	at	low
socioeconomic	levels,	early	intervention,	starting	in
kindergarten	and	teaching	the	fundamentals	of	learning
and	attention,	can	be	one	of	the	best	educational
investments.

I’LL	ATTEND	IF	YOU	ATTEND

	ἄνθρωπος	φύσει	πολιτικὸν	ζῷον

Man	is	by	nature	a	social	(or	political)	animal.

Aristotle	(350	BCE)



All	mammalian	species—including,	of	course,	all
primates—possess	attention	systems.	But	attention	in
humans	exhibits	a	unique	feature	that	further
accelerates	learning:	social	attention	sharing.	In	Homo
sapiens,	more	than	in	any	other	primate,	attention	and
learning	depend	on	social	signals:	I	attend	where	you
attend,	and	I	learn	from	what	you	teach	me.
From	the	earliest	age,	infants	gaze	at	faces	and	pay

particular	attention	to	people’s	eyes.	As	soon	as
something	is	said	to	them,	their	first	reflex	is	not	to
explore	the	scene,	but	to	catch	the	gaze	of	the	person
they	are	interacting	with.	Only	once	eye	contact	is
established	do	they	turn	toward	the	object	that	the
adult	is	staring	at.	This	remarkable	ability	for	social
attention	sharing,	also	called	“shared	attention,”
determines	what	children	learn.
I	have	already	told	you	about	experiments	where

babies	are	taught	the	meaning	of	a	new	word,	such	as
“wog.”	If	the	infants	can	follow	the	speaker’s	gaze
toward	the	so-called	wog,	they	have	no	trouble	learning
this	word	in	just	a	few	trials—but	if	wog	is	repeatedly
emitted	by	a	loudspeaker,	in	direct	relation	to	the	same
object,	no	learning	occurs.	The	same	goes	for	learning
phonetic	categories:	a	nine-month-old	American	child
who	interacts	with	a	Chinese	nanny	for	only	a	few	weeks
acquires	Chinese	phonemes—but	if	he	receives	exactly



the	same	amount	of	linguistic	stimulation	from	a	very
high-quality	video,	no	learning	occurs.42

Hungarian	psychologists	Gergely	Csibra	and	György
Gergely	postulate	that	teaching	others	and	learning
from	others	are	fundamental	evolutionary	adaptations
of	the	human	species.43 	Homo	sapiens	is	a	social
animal	whose	brain	is	endowed	with	circuits	for	“natural
pedagogy”	that	are	triggered	as	soon	as	we	attend	to
what	others	are	trying	to	teach	us.	Our	global	success	is
due,	at	least	in	part,	to	a	specific	evolutionary	trait:	the
ability	to	share	attention	with	others.	Most	of	the
information	we	learn,	we	owe	to	others,	rather	than	to
our	personal	experience.	In	this	manner,	the	collective
culture	of	the	human	species	can	rise	far	above	what
any	individual	could	discover	alone.	This	is	what
psychologist	Michael	Tomasello	calls	the	“cultural
ratchet”	effect:	like	a	ratchet	prevents	an	elevator	from
falling	back	down,	social	sharing	prevents	culture	from
regressing.	Whenever	one	person	makes	a	useful
discovery,	it	quickly	spreads	to	the	whole	group.	Thanks
to	social	learning,	it	is	very	rare	for	the	cultural	elevator
to	come	down	and	for	a	major	invention	to	be
forgotten.
Our	attentional	system	has	adapted	to	this	cultural

context.	Gergely	and	Csibra’s	research	shows	that,	from
an	early	age,	children’s	attention	is	highly	attuned	to
adult	signals.	The	presence	of	a	human	tutor,	who	looks



at	the	child	before	making	a	specific	demonstration,
massively	modulates	learning.	Not	only	does	eye
contact	attract	the	child’s	attention,	but	it	also	signals
that	the	tutor	intends	to	teach	the	child	an	important
point.	Even	babies	are	sensitive	to	this:	eye	contact
puts	them	in	a	“pedagogical	stance”	that	encourages
them	to	interpret	the	information	as	important	and
generalizable.
Let’s	take	an	example:	A	young	woman	turns	to

object	A	with	a	big	smile,	then	to	object	B	with	a
grimace.	An	eighteen-month-old	baby	watches	the
scene.	What	conclusion	will	the	baby	draw?	It	all
depends	on	the	signals	that	the	child	and	the	adult
exchanged.	If	no	eye	contact	was	established,	then	the
child	simply	remembers	one	specific	piece	of
information:	this	person	likes	object	A	and	dislikes
object	B.	If,	however,	eye	contact	was	established,	then
the	child	deduces	much	more:	he	believes	that	the
adult	was	trying	to	teach	him	something	important,	and
he	therefore	draws	the	more	general	conclusion	that
object	A	is	pleasant	and	object	B	is	bad,	not	only	for
this	person	in	particular	but	for	everyone.	Children	pay
extreme	attention	to	any	evidence	of	voluntary
communication.	When	someone	gives	obvious	signs	of
trying	to	communicate	with	them,	they	infer	that	this
person	wants	to	teach	them	abstract	information,	not
just	their	own	idiosyncratic	preferences.



Social	interactions	are	an	essential	ingredient	of	the	human
learning	algorithm.	What	we	learn	depends	on	our
understanding	of	the	intentions	of	others.	Even	eighteen-month-
old	babies	understand	that	if	you	look	them	in	the	eye,	you	are
trying	to	convey	important	information	to	them.	Following	eye
contact,	they	learn	more	effectively	and	succeed	more	in



generalizing	than	other	people	(top).	As	early	as	fourteen	months
of	age,	babies	can	already	interpret	people’s	intentions:	after
seeing	a	person	turn	on	a	light	with	her	head,	they	imitate	this
gesture	in	every	way,	unless	the	person’s	hands	were	occupied,
in	which	case	babies	understand	that	they	can	simply	press	the
button	with	their	hands	(bottom).

It	is	not	only	eye	contact	that	matters:	children	also
quickly	understand	the	communicative	intention	that
lies	behind	the	act	of	pointing	with	a	finger	(whereas
chimpanzees	never	really	understand	this	gesture).	Even
babies	realize	when	someone	is	trying	to	get	their
attention	and	give	them	important	information.	For
instance,	when	nine-month-old	babies	see	someone
trying	to	catch	their	attention	and	then	pointing	to	an
object,	they	later	remember	the	identity	of	that	object,
because	they	understand	that	this	is	the	information
that	matters	to	their	interlocutor—whereas,	if	they	see
the	same	person	reaching	toward	the	object	without
looking	at	them,	they	remember	only	the	position	of
the	object,	not	its	identity.44

Parents	and	teachers,	always	keep	this	crucial	fact	in
mind:	your	attitude	and	your	gaze	mean	everything	for
a	child.	Getting	a	child’s	attention	through	visual	and
verbal	contact	ensures	that	she	shares	your	attention
and	increases	the	chance	that	she	will	retain	the
information	you	are	trying	to	convey.



TEACHING	IS	ATTENDING	TO	SOMEONE	ELSE’S
KNOWLEDGE

No	other	species	can	teach	like	we	do.	The	reason	is
simple:	we	are	probably	the	only	animals	with	a	theory
of	other	people’s	minds,	an	ability	to	pay	attention	to
them	and	imagine	their	thoughts—including	what	they
think	others	think,	and	so	on	and	so	forth,	in	an	infinite
loop.	This	type	of	recursive	representation	is	typical	of
the	human	brain	and	plays	an	essential	role	in	the
pedagogical	relationship.	Educators	must	constantly
think	about	what	their	pupils	do	not	know:	teachers
adapt	their	words	and	choose	their	examples	in	order
to	increase	their	students’	knowledge	as	quickly	as
possible.	And	the	pupils	know	that	their	teacher	knows
that	they	do	not	know.	Once	children	adopt	this
pedagogical	stance,	they	interpret	each	act	of	the
teacher	as	an	attempt	to	convey	knowledge	to	them.
And	the	loop	goes	on	forever:	adults	know	that	children
know	that	adults	know	that	they	do	not	know	…	which
allows	adults	to	choose	their	examples	knowing	that
children	will	try	to	generalize	them.
This	pedagogical	relationship	may	well	be	unique	to

Homo	sapiens:	it	does	not	seem	to	exist	in	any	other
species.	In	2006,	a	landmark	article45 	published	in
Science	described	a	form	of	teaching	in	the	meerkat,	a
small	South	African	mammal	of	the	mongoose	family—
but	in	my	view,	the	study	misused	the	very	definition	of



teaching.	What	was	it	about?	The	biggest	family	affair:
learning	how	to	prepare	food!	Mongooses	face	a
serious	cooking	challenge:	they	feed	on	extremely
dangerous	prey,	scorpions	with	deadly	stingers	that
need	to	be	removed	before	eating.	Their	plight	is
similar	to	that	of	Japanese	cooks	preparing	fugu,	a	fish
whose	liver,	ovaries,	eyes,	and	skin	contain	deadly
doses	of	the	paralyzing	drug	tetrodotoxin:	one	error	in
the	recipe,	and	you	are	dead.	Japanese	chefs	train	for
three	years	before	they	are	allowed	to	serve	their	first
fugu—but	how	do	meerkats	acquire	their	know-how?
The	Science	paper	convincingly	showed	that	adult
meerkats	help	their	young	by	first	offering	them
“prepared”	food	consisting	of	scorpions	with	the
stingers	removed.	As	young	meerkats	grow,	the	adults
provide	them	with	an	increasing	proportion	of	live
scorpions,	and	this	obviously	helps	the	young	become
independent	hunters.	Thus,	according	to	the	authors,
three	teaching	criteria	are	met:	the	adult	performs	a
specific	behavior	in	the	presence	of	the	young;	this
behavior	has	a	cost	for	the	adult;	and	the	young	benefit
by	acquiring	knowledge	more	quickly	than	if	the	adult
had	not	intervened.
The	case	of	meerkats	is	certainly	noteworthy:	during

mongoose	evolution,	a	singular	mechanism	emerged
that	clearly	facilitates	survival.	But	is	this	genuine
teaching?	In	my	opinion,	the	data	do	not	allow	us	to



conclude	that	meerkats	really	teach	their	young,
because	one	crucial	ingredient	is	missing:	shared
attention	to	one	another’s	knowledge.	There	is	no
evidence	that	adult	meerkats	pay	any	attention	to	what
the	young	know	or,	conversely,	that	the	young	take	into
account	the	pedagogical	stance	of	the	adults.	Adult
mongooses	only	present	increasingly	dangerous	prey	to
their	young	as	they	age.	As	far	as	we	know,	this
mechanism	could	be	completely	pre-wired	and	specific
to	scorpion	consumption—a	complex	but	narrow-
minded	behavior	comparable	to	the	famous	bee	dance
or	the	flamingo’s	bridal	parade.
In	brief,	although	we	attempt	to	project	onto

mongooses	and	scorpions	our	own	preconceptions,	a
closer	look	reveals	how	far	their	behavior	is	from	ours.
With	its	obvious	limitations,	the	story	of	the	teaching
mongoose	actually	teaches	us,	as	in	a	negative	image,
what	is	truly	unique	and	precious	about	our	species.
The	genuine	pedagogical	relationships	that	happen	in
our	schools	and	universities	involve	strong	mental
bonds	between	teachers	and	students.	A	good	teacher
builds	a	mental	model	of	his	students,	their	skills	and
their	mistakes,	and	takes	every	action	to	enrich	his
pupils’	minds.	This	ideal	definition	therefore	excludes
any	teacher	(human	or	computer)	who	merely
mechanically	delivers	a	stereotypical	lesson,	without
tailoring	it	to	the	prior	knowledge	and	expectations	of



his	audience—such	mindless,	unidirectional	teaching	is
inefficient.	On	the	flip	side,	teaching	is	efficient	only
when	the	students,	for	their	part,	have	good	reasons	to
be	persuaded	that	teachers	do	their	best	to	convey
their	knowledge.	Any	healthy	pedagogical	relationship
must	be	based	on	bidirectional	streams	of	attention,
listening,	respect,	and	mutual	trust.	There	is	currently
no	evidence	that	such	a	“theory	of	mind”—the	capacity
of	students	and	teachers	to	attend	to	one	another’s
mental	states—exists	in	any	animal	other	than	the
human	species.
The	meerkat’s	modest	pedagogy	also	fails	to	do

justice	to	the	role	that	education	plays	in	human
societies.	“Every	man	is	a	humanity,	a	universal	history,”
says	Jules	Michelet	(1798–1874).	Through	education,
we	convey	to	others	the	best	thoughts	of	the	thousands
of	human	generations	that	preceded	us.	Every	word,
every	concept	we	learn	is	a	small	conquest	that	our
ancestors	passed	on	to	us.	Without	language,	without
cultural	transmission,	without	communal	education,
none	of	us	could	have	discovered,	alone,	all	the	tools
that	currently	extend	our	physical	and	mental	abilities.
Pedagogy	and	culture	make	each	of	us	the	heir	to	an
extensive	chain	of	human	wisdom.
But	Homo	sapiens’	dependency	on	social

communication	and	education	is	as	much	of	a	curse	as
it	is	a	gift.	On	the	flip	side	of	the	coin,	it	is	education’s



fault	that	religious	myths	and	fake	news	propagate	so
easily	in	human	societies.	From	the	earliest	age,	our
brains	trustfully	absorb	the	tales	we	are	told,	whether
they	are	true	or	false.	In	a	social	context,	our	brains
lower	their	guard;	we	stop	acting	like	budding	scientists
and	become	mindless	lemmings.	This	can	be	good—as
when	we	trust	the	knowledge	of	our	science	teachers,
and	thus	avoid	having	to	replicate	every	experiment
since	Galileo’s	time!	But	it	can	also	be	detrimental,	as
when	we	collectively	propagate	an	unreliable	piece	of
“wisdom”	inherited	from	our	forebears.	It	is	on	this
basis	that	doctors	foolishly	practiced	bloodletting	and
cupping	therapies	for	centuries,	without	ever	testing
their	actual	impact.	(In	case	you	are	wondering,	both
are	actually	harmful	in	the	vast	majority	of	diseases.)
A	famous	experiment	demonstrates	the	extent	to

which	social	learning	can	turn	intelligent	children	into
unthinking	copycats.	As	early	as	fourteen	months	of
age,	babies	readily	imitate	a	person’s	action,	even	if	it
doesn’t	make	sense	to	them—or	perhaps	especially
when	it	doesn’t.46 	In	this	experiment,	infants	see	an
adult	with	her	hands	tied	up	by	a	shawl,	pressing	a
button	with	her	head.	The	infants	infer	that	they	can
simply	press	the	button	with	their	free	hands,	and	this	is
how	they	end	up	imitating	the	action,	rather	than
copying	it	in	every	detail.	If,	however,	they	see	the
same	person	pressing	a	button	with	her	head	for	no



particular	reason,	hands	completely	free	and	perfectly
visible,	then	the	babies	seem	to	abandon	all	reasoning
and	blindly	trust	the	adult—they	faithfully	imitate	the
action	with	a	bow	of	the	head,	although	this	movement
is	meaningless.	The	infants’	head	bow	seems	to	be	a
precursor	of	the	thousands	of	arbitrary	gestures	and
conventions	that	human	societies	and	religions
perpetuate.	In	adulthood,	this	social	conformism
persists	and	grows.	Even	the	most	trivial	of	our
perceptual	decisions,	such	as	judging	the	length	of	a
line,	are	influenced	by	social	context:	when	our
neighbors	come	to	a	different	conclusion	than	us,	we
frequently	revise	our	judgment	to	align	it	with	theirs,
even	when	their	answer	seems	implausible.47 	In	such
cases,	the	social	animal	in	us	overrides	the	rational
beast.
In	short,	our	Homo	sapiens	brain	is	equipped	with

two	modes	of	learning:	an	active	mode,	in	which	we
test	hypotheses	against	the	outside	world	like	good
scientists,	and	a	receptive	mode,	in	which	we	absorb
what	others	transmit	to	us	without	personally	verifying
it.	The	second	mode,	through	a	cultural	ratchet	effect,
is	what	allowed	the	extraordinary	expansion	of	human
societies	over	the	past	fifty	thousand	years.	But	without
the	critical	thinking	that	characterizes	the	first	mode,	the
second	becomes	vulnerable	to	the	spread	of	fake	news.
The	active	verification	of	knowledge,	the	rejection	of



simple	hearsay,	and	the	personal	construction	of
meaning	are	essential	filters	to	protect	us	from	deceitful
legends	and	gurus.	We	must	therefore	find	a
compromise	between	our	two	learning	modes:	our
students	must	be	attentive	and	confident	in	their
teachers’	knowledge,	but	also	autonomous	and	critical
thinkers,	actors	of	their	own	learning.
We	are	now	touching	the	second	pillar	of	learning:

active	engagement.







CHAPTER	8

Active	Engagement

TAKE	TWO	KITTENS.	PUT	A	COLLAR	AND	LEASH	ON	THE	FIRST
ONE.	PLACE	the	second	one	in	a	harness.	Finally,	connect
them	to	a	merry-go-round	apparatus	which	ensures	that
the	movements	of	the	two	kittens	are	strictly	linked.	The
idea	is	that	the	two	animals	receive	identical	visual
inputs,	but	one	is	active	while	the	other	is	passive.	The
former	explores	the	environment	on	its	own,	while	the
latter	moves	in	exactly	the	same	way,	but	without
control.
This	is	the	classic	carousel	experiment	that	Richard

Held	(1922–2016)	and	Alan	Hein	performed	in	1963—a
time	when	the	ethics	of	animal	experimentation	was
clearly	not	as	developed	as	it	is	today!	This	very	simple
experiment	led	to	an	important	discovery:	active
exploration	of	the	world	is	essential	for	the	proper
development	of	vision.	Over	a	period	of	a	few	weeks,
for	three	hours	a	day,	the	two	kittens	lived	in	a	large
cylinder	lined	with	vertical	bars.	Although	their	visual
inputs	were	very	similar,	they	developed	dramatically
different	visual	systems.1 	Despite	the	impoverished
environment	consisting	only	of	vertical	bars,	the	active
kitten	developed	normal	vision.	The	passive	kitten,	on



the	other	hand,	lost	its	visual	abilities	and,	at	the	end	of
the	experiment,	failed	basic	visual	exploration	tests.	In
the	cliff	test,	for	example,	the	animal	was	placed	on	a
bridge	that	it	could	leave	either	on	the	side	of	a	high
cliff	or	on	the	shallower	side.	A	normal	animal	does	not
hesitate	for	a	second	and	jumps	to	the	easy	side.	The
passive	animal,	however,	chose	at	random.	Other	tests
showed	that	the	passive	animal	failed	to	develop	a
proper	model	of	visual	space	and	did	not	feel	out	its
environment	with	its	paws	like	normal	cats	do.

A	PASSIVE	ORGANISM	DOES	NOT	LEARN

Held	and	Hein’s	carousel	experiment	is	the	metaphor
for	our	second	pillar	of	learning:	active	engagement.
Converging	results	from	diverse	fields	suggest	that	a
passive	organism	learns	little	or	nothing.	Efficient
learning	means	refusing	passivity,	engaging,	exploring,
and	actively	generating	hypotheses	and	testing	them
on	the	outside	world.
To	learn,	our	brain	must	first	form	a	hypothetical

mental	model	of	the	outside	world,	which	it	then
projects	onto	its	environment	and	puts	to	a	test	by
comparing	its	predictions	to	what	it	receives	from	the
senses.	This	algorithm	implies	an	active,	engaged,	and
attentive	posture.	Motivation	is	essential:	we	learn	well
only	if	we	have	a	clear	goal	and	we	fully	commit	to
reaching	it.



Don’t	get	me	wrong:	active	engagement	does	not
mean	that	children	should	be	encouraged	to	fidget	in
class	all	day	long!	I	once	visited	a	school	where	the
principal	told	me,	with	a	certain	pride,	how	he	applied
my	ideas:	he	had	equipped	his	pupils’	desks	with
pedals	so	that	his	students	could	remain	active	during
math	class	….	He	had	totally	missed	my	point	(and
showed	me	the	limits	of	the	carousel	experiment
metaphor).	Being	active	and	engaged	does	not	mean
that	the	body	must	move.	Active	engagement	takes
place	in	our	brains,	not	our	feet.	The	brain	learns
efficiently	only	if	it	is	attentive,	focused,	and	active	in
generating	mental	models.	To	better	digest	new
concepts,	active	students	constantly	rephrase	them	into
words	or	thoughts	of	their	own.	Passive	or,	worse,
distracted	students	will	not	benefit	from	any	lesson,
because	their	brains	do	not	update	their	mental	models
of	the	world.	This	has	nothing	to	do	with	actual	motion.
Two	students	could	be	very	still	yet	differ	dramatically
in	the	inner	movements	of	their	thoughts:	one	actively
follows	the	course,	while	the	other	disengages	and
becomes	passive	or	distracted.
Experiments	show	that	we	rarely	learn	by	merely

accumulating	sensory	statistics	in	a	passive	manner.
This	can	happen,	but	mainly	at	the	lower	levels	of	our
sensory	and	motor	systems.	Remember	those
experiments	where	a	child	hears	hundreds	of	syllables,



computes	the	transition	probabilities	between	syllables
(such	as	/bo/	and	/t^l/),	and	ends	up	detecting	the
presence	of	words	(“bottle”)?	This	type	of	implicit
learning	seems	to	persist	even	when	infants	are
asleep.2 	However,	it	is	the	exception	that	proves	the
rule:	in	the	vast	majority	of	cases,	and	as	soon	as
learning	concerns	high-level	cognitive	properties,	such
as	the	explicit	memory	of	word	meanings	rather	than
their	mere	form,	learning	seems	to	occur	only	if	the
learner	pays	attention,	thinks,	anticipates,	and	puts
forth	hypotheses	at	the	risk	of	making	mistakes.	Without
attention,	effort,	and	in-depth	reflection,	the	lesson
fades	away,	without	leaving	much	of	a	trace	in	the
brain.

DEEPER	PROCESSING,	BETTER	LEARNING

Let’s	take	a	classical	example	from	cognitive
psychology:	the	effect	of	word	processing	depth.
Imagine	that	I	present	a	list	of	sixty	words	to	three
groups	of	students.	I	ask	the	first	group	to	decide
whether	the	words’	letters	are	upper-	or	lowercase;	the
second	group,	whether	the	words	rhyme	with	“chair”;
and	the	third,	whether	they	are	animal	names	or	not.
Once	the	students	are	finished,	I	give	them	a	memory
test.	Which	group	remembers	the	words	best?	Memory
turns	out	to	be	much	better	in	the	third	group,	who
processed	the	words	in	depth,	at	the	meaning	level	(75



percent	success),	than	in	the	other	two	groups,	who
processed	the	more	superficial	sensory	aspects	of	the
words,	either	at	the	letter	level	(33	percent	success)	or
the	rhyme	level	(52	percent	success).3 	We	do	find	a
weak	implicit	and	unconscious	trace	of	the	words	in	all
groups:	learning	leaves	its	subliminal	mark	within	the
spelling	and	phonological	systems.	However,	only	in-
depth	semantic	processing	guarantees	explicit,	detailed
memory	of	the	words.	The	same	phenomenon	occurs	at
the	level	of	sentences:	students	who	make	the	effort	to
understand	sentences	on	their	own,	without	teacher
guidance,	show	much	better	retention	of	information.4

This	is	a	general	rule,	which	the	American	psychologist
Henry	Roediger	states	as	follows:	“Making	learning
conditions	more	difficult,	thus	requiring	students	to
engage	more	cognitive	effort,	often	leads	to	enhanced
retention.”5

Brain	imaging	is	beginning	to	clarify	the	origins	of	this
processing	depth	effect.6 	Deeper	processing	leaves	a
stronger	mark	in	memory	because	it	activates	areas	of
the	prefrontal	cortex	that	are	associated	with	conscious
word	processing	and	because	these	areas	form
powerful	loops	with	the	hippocampus,	which	stores
information	in	the	form	of	explicit	episodic	memories.
In	the	cult	film	La	Jetée	(1962),	by	French	director

Chris	Marker	(1921–2012),	a	voice-over	states	the
following	aphorism,	which	sounds	like	a	profound	truth:



“Nothing	distinguishes	memories	from	ordinary
moments:	only	later	do	they	make	themselves	known,
from	their	scars.”	A	beautiful	adage	…	but	a	false
proverb,	because	brain	imaging	shows	that	at	the	onset
of	memory	encoding,	the	events	of	our	life	which	will
remain	engraved	in	our	memory	can	already	be
distinguished	from	those	that	will	leave	no	trace:	the
former	have	been	processed	at	a	deeper	level.7 	By
scanning	a	person	while	she	is	merely	exposed	to	a	list
of	words	and	images,	we	can	predict	which	of	those
individual	stimuli	will	be	later	forgotten	and	which	will
be	retained.	The	key	predictor	is	whether	they	induced
activity	in	the	frontal	cortex,	the	hippocampus,	and	the
neighboring	regions	of	the	parahippocampal	cortex.
The	active	engagement	of	these	regions	is	a	direct
reflection	of	the	depth	to	which	these	words	and
images	traveled	in	the	brain,	and	it	predicts	the
strength	of	the	trace	that	they	leave	in	memory.	An
unconscious	image	enters	sensory	areas	but	creates
only	a	modest	wave	of	activity	in	the	prefrontal	cortex.
Attention,	concentration,	processing	depth,	and
conscious	awareness	transform	this	small	wave	into	a
neuronal	tsunami	that	invades	the	prefrontal	cortex	and
maximizes	subsequent	memorization.8

The	role	of	active	engagement	and	processing	depth
is	confirmed	by	converging	evidence	from	pedagogical
studies	in	a	school	context—for	example,	learning



physics	at	the	undergraduate	level.	Students	must	learn
the	abstract	concepts	of	angular	momentum	and	motor
torque.	We	divide	the	students	into	two	groups:	one
group	is	given	ten	minutes	to	experiment	with	a	bicycle
wheel,	and	the	other	group,	ten	minutes	of	verbal
explanation	and	observation	of	other	students.	The
result	is	clear:	learning	is	much	better	in	the	group	that
benefited	from	active	interaction	with	the	physical
object.9 	Making	a	course	deeper	and	more	engaging
facilitates	the	subsequent	retention	of	information.
This	conclusion	receives	support	from	a	recent	review

of	more	than	two	hundred	pedagogical	studies	in
undergraduate	STEM	courses:	traditional	lecturing,
where	students	remain	passive	while	the	teacher
preaches	for	fifty	minutes,	is	inefficient.10 	Compared
with	teaching	methods	that	promote	active
engagement,	lecturing	systematically	yields	lower
performances.	In	all	disciplines,	from	math	to
psychology,	biology	to	computer	science,	an	active
student	succeeds	more.	With	active	engagement,
examination	scores	progress	by	half	a	standard
deviation,	which	is	considerable,	and	the	failure	rate
decreases	by	over	10	percent.	But	what	are	the
strategies	that	engage	students	the	most?	There	is	no
single	miraculous	method,	but	rather	a	whole	range	of
approaches	that	force	students	to	think	for	themselves,
such	as	practical	activities,	discussions	in	which



everyone	takes	part,	small	group	work,	or	teachers	who
interrupt	their	class	to	ask	a	difficult	question	and	let
the	students	think	about	it	for	a	while.	All	solutions	that
force	students	to	give	up	the	comfort	of	passivity	are
effective.

THE	FAILURE	OF	DISCOVERY-BASED	TEACHING

None	of	this	is	new,	you	may	be	thinking,	and	many
teachers	already	apply	these	ideas.	However,	in	the
pedagogical	domain,	neither	tradition	nor	intuition	can
be	trusted:	we	need	to	scientifically	verify	which
pedagogies	actually	improve	students’	comprehension
and	retention,	and	which	do	not.	And	this	is	an
opportunity	for	me	to	clarify	a	very	important
distinction.	The	fundamentally	correct	view	that	children
must	be	attentively	and	actively	engaged	in	their	own
learning	must	not	be	confused	with	classical
constructivism	or	discovery	learning	methods—which
are	seductive	ideas	whose	ineffectiveness	has,
unfortunately,	been	repeatedly	demonstrated.11 	This	is
a	key	distinction,	but	it	is	rarely	understood,	in	part
because	the	latter	pedagogies	are	also	known	as	active
pedagogies,	which	is	a	great	source	of	confusion.
When	we	talk	about	discovery	learning,	what	do	we

mean?	This	nebula	of	pedagogical	views	can	be	traced
back	to	Jean-Jacques	Rousseau	and	has	reached	us
through	famous	educators	such	as	John	Dewey	(1859–



1952),	Ovide	Decroly	(1871–1932),	Célestin	Freinet
(1896–1966),	Maria	Montessori,	and,	more	recently,
Jean	Piaget	and	Seymour	Papert	(1928–2016).	“Do	I
dare	set	forth	here,”	writes	Rousseau	in	Emile,	or	On
Education,	“the	most	important,	the	most	useful	rule	of
all	education?	It	is	not	to	save	time,	but	to	squander	it.”
For	Rousseau	and	his	successors,	it	is	always	better	to
let	children	discover	for	themselves	and	build	their	own
knowledge,	even	if	it	implies	that	they	might	waste
hours	tinkering	and	exploring	….	This	time	is	never	lost,
Rousseau	believed,	because	it	eventually	yields
autonomous	minds,	capable	not	only	of	thinking	for
themselves	but	also	of	solving	real	problems,	rather
than	passively	receiving	knowledge	and	spitting	out
rote	and	ready-made	solutions.	“Teach	your	student	to
observe	the	phenomena	of	nature,”	says	Rousseau,
“and	you	will	soon	rouse	his	curiosity;	but	if	you	want
his	curiosity	to	grow,	do	not	be	in	too	great	a	hurry	to
satisfy	it.	Lay	the	problems	before	him	and	let	him	solve
them	himself.”
The	theory	is	attractive	….	Unfortunately,	multiple

studies,	spread	over	several	decades,	demonstrate	that
its	pedagogical	value	is	close	to	zero—and	this	finding
has	been	replicated	so	often	that	one	researcher
entitled	his	review	paper	“Should	There	Be	a	Three-
Strikes	Rule	against	Pure	Discovery	Learning?”	When
children	are	left	to	themselves,	they	have	great	difficulty



discovering	the	abstract	rules	that	govern	a	domain,
and	they	learn	much	less,	if	anything	at	all.	Should	we
be	surprised	by	this?	How	could	we	imagine	that
children	would	rediscover,	in	a	few	hours	and	without
any	external	guidance,	what	humanity	took	centuries	to
discern?	At	any	rate,	the	failures	are	resounding	in	all
areas:

In	reading:	Mere	exposure	to	written	words
usually	leads	to	nothing	unless	children	are
explicitly	told	about	the	presence	of	letters	and
their	correspondence	with	speech	sounds.	Few
children	manage	to	correlate	written	and	spoken
language	by	themselves.	Imagine	the	intellectual
powers	that	our	young	Champollion	would	need
in	order	to	discover	that	all	words	beginning	with
the	sound	/R/	also	bear	the	mark	“R”	or	“r”	at
their	leftmost	end	….	The	task	would	be	out	of
reach	if	teachers	did	not	carefully	guide	children
through	an	ordered	set	of	well-chosen	examples,
simple	words,	and	isolated	letters.

In	mathematics:	It	is	said	that	at	the	age	of	seven,
the	brilliant	mathematician	Carl	Gauss	(1777–
1855)	discovered,	all	by	himself,	how	to	quickly
add	the	numbers	from	one	to	one	hundred	(think
about	it—I	give	the	solution	in	the	notes12 ).
What	worked	for	Gauss,	however,	may	not	apply



to	other	children.	Research	is	clear	on	this	point:
learning	works	best	when	math	teachers	first	go
through	an	example,	in	some	detail,	before
letting	their	students	tackle	similar	problems	on
their	own.	Even	if	children	are	bright	enough	to
discover	the	solution	by	themselves,	they	later
end	up	performing	worse	than	other	children
who	were	first	shown	how	to	solve	a	problem
before	being	left	to	their	own	means.

In	computer	science:	In	his	book	Mindstorms
(1980),	computer	scientist	Seymour	Papert
explains	why	he	invented	the	Logo	computer
language	(famous	for	its	computerized	turtle	that
draws	patterns	on	the	screen).	Papert’s	idea	was
to	let	children	explore	computers	on	their	own,
without	instruction,	by	getting	hands-on
experience.	Yet	the	experiment	was	a	failure:
after	a	few	months,	the	children	could	write	only
small,	simple	programs.	The	abstract	concepts	of
computer	science	eluded	them,	and	on	a
problem-solving	test,	they	did	no	better	than
untrained	children:	the	little	computer	literacy
they	had	learned	had	not	spread	to	other	areas.
Research	shows	that	explicit	teaching,	with
alternating	periods	of	explanation	and	hands-on
testing,	allows	children	to	develop	a	much



deeper	understanding	of	the	Logo	language	and
computer	science.

I	directly	experienced	the	birth	of	the	personal	home
computer—I	was	fifteen	years	old	when	my	father
bought	us	a	Tandy	TRS-80	with	sixteen	kilobytes	of
memory	and	48-by-128-pixel	graphics.	Like	others	of
my	generation,	I	learned	to	code	in	the	programming
language	BASIC	without	a	teacher	or	a	class—although
I	was	not	alone:	my	brother	and	I	devoured	all	the
magazines,	books,	and	examples	we	could	get	our
hands	on.	I	eventually	became	a	reasonably	effective
programmer	…	but	when	I	entered	a	master’s	program
in	computer	science,	I	became	aware	of	the	enormity	of
my	shortcomings:	I	had	been	tinkering	all	this	time
without	understanding	the	deep,	logical	structure	of
programs,	nor	the	proper	practices	that	made	them
clear	and	legible.	And	this	is	perhaps	the	worst	effect	of
discovery	learning:	it	leaves	students	under	the	illusion
that	they	have	mastered	a	certain	topic,	without	ever
giving	them	the	means	to	access	the	deeper	concepts
of	a	discipline.
In	summary,	while	it	is	crucial	for	students	to	be

motivated,	active,	and	engaged,	this	does	not	mean
that	they	should	be	left	to	their	own	devices.	The	failure
of	constructivism	shows	that	explicit	pedagogical
guidance	is	essential.	Teachers	must	provide	their



students	with	a	structured	learning	environment
designed	to	progressively	guide	them	to	the	top	as
quickly	as	possible.	The	most	efficient	teaching
strategies	are	those	that	induce	students	to	be	actively
engaged	while	providing	them	with	a	thoughtful
pedagogical	progression	that	is	closely	channeled	by
the	teacher.	In	the	words	of	psychologist	Richard
Mayer,	who	reviewed	this	field,	the	best	success	is
achieved	by	“methods	of	instruction	that	involve
cognitive	activity	rather	than	behavioral	activity,
instructional	guidance	rather	than	pure	discovery,	and
curricular	focus	rather	than	unstructured
exploration.”13 	Successful	teachers	provide	a	clear	and
rigorous	sequence	that	begins	with	the	basics.	They
constantly	assess	their	students’	mastery	and	let	them
build	a	pyramid	of	meaning.
And	this	is	indeed	what	most	schools	inspired	by

Montessori	do	today:	they	do	not	let	children
“marinate”	without	doing	anything;	instead,	they
propose	a	whole	series	of	rational	and	hierarchical
activities,	whose	purpose	is	first	carefully	demonstrated
by	teachers	before	being	carried	out	independently	by
children.	Active	engagement,	pleasure,	and	autonomy,
under	the	guidance	of	an	explicit	teaching	method	and
with	stimulating	pedagogical	materials:	these	are	the
ingredients	for	a	winning	recipe	whose	effectiveness
has	been	repeatedly	demonstrated.



Pure	discovery	learning,	the	idea	that	children	can
teach	themselves,	is	one	of	many	educational	myths
that	have	been	debunked	but	still	remain	curiously
popular.	It	belongs	to	a	collection	of	urban	legends	that
mar	the	educational	field,	and	at	least	two	other	major
misconceptions	are	linked	to	it:14

The	myth	of	the	digital	native:	Children	of	the
new	generation,	unlike	their	parents,	have	been
bathed	in	computers	and	electronics	since	their
earliest	years.	As	a	result,	according	to	this	myth,
these	native	Homo	zappiens	are	champions	of
the	digital	world,	for	whom	bits	and	bytes	are
completely	transparent,	and	who	surf	and	switch
between	digital	media	with	incredible	ease.
Nothing	could	be	further	from	the	truth:	research
shows	that	these	children’s	mastery	of
technology	is	often	superficial,	and	that	they	are
just	as	bad	as	any	of	us	at	multitasking.	(As	we
have	seen,	the	central	bottleneck	that	prevents
us	from	doing	two	things	at	once	is	a
fundamental	property	of	our	brain	architecture,
present	in	all	of	us.)

The	myth	of	learning	styles:	According	to	this
idea,	each	student	has	his	or	her	own	preferred
learning	style—some	are	primarily	visual	learners,
others	auditory,	yet	others	learn	better	from



hands-on	experience,	and	so	on.	Education
should	therefore	be	tailored	to	each	student’s
favorite	mode	of	knowledge	acquisition.	This	is
also	patently	false:15 	as	amazing	as	it	may	seem,
there	is	no	research	supporting	the	notion	that
children	differ	radically	in	their	preferred	learning
modality.	What	is	true	is	that	some	teaching
strategies	work	better	than	others—but	when
they	do,	this	superiority	applies	to	all	of	us,	not
just	a	subgroup.	For	instance,	experiments	show
that	all	of	us	have	an	easier	time	remembering	a
picture	than	a	spoken	word,	and	that	our	memory
is	even	better	when	the	information	is	conveyed
by	both	modalities—an	audiovisual	experience.
Again,	this	is	the	case	for	all	children.	There	is
simply	no	evidence	in	favor	of	the	existence	of
subtypes	of	children	with	radically	different
learning	styles,	such	that	type	A	children	learn
better	with	strategy	A,	and	type	B	children	with
strategy	B.	For	all	we	know,	all	humans	share	the
same	learning	algorithm.

What	about	all	the	special	education	books	and
software	that	claim	to	tailor	education	to	each	child’s
needs?	Are	they	worthless?	Not	necessarily.	Children
do	vary	dramatically,	not	in	learning	style,	but	in	the
speed,	ease,	and	motivation	with	which	they	learn.	In



first	grade,	for	instance,	the	top	10	percent	of	children
already	read	more	than	four	million	words	per	year,
whereas	the	bottom	10	percent	read	less	than	sixty
thousand16 —and	dyslexic	children	may	not	read	at	all.
Developmental	deficits	such	as	dyslexia	and	dyscalculia
may	come	in	several	varieties,	and	it	is	often	useful	to
carefully	diagnose	the	exact	nature	of	the	impairment	in
order	to	adapt	the	lessons.	Children	do	benefit	from
pedagogical	interventions	whose	contents	are	tailored
to	their	specific	difficulties.	For	instance,	many	children,
even	in	advanced	mathematics,	fail	to	understand	how
fractions	work—in	this	case,	the	teacher	should	shed
the	current	curriculum	and	return	to	the	basics	of
numbers	and	arithmetic.	However,	every	teacher	should
also	keep	in	mind	that	all	children	learn	using	the	same
basic	machinery—one	that	prefers	focused	attention	to
dual	tasking,	active	engagement	to	passive	lecturing,
detailed	error	correction	to	phony	praise,	and	explicit
teaching	over	constructivism	or	discovery	learning.

CURIOSITY	AND	HOW	TO	PIQUE	IT

All	men	by	nature	desire	to	know.

Aristotle,	Metaphysics	(c.	335	BCE)

I	have	no	special	talent.	I	am	only	passionately
curious.



Albert	Einstein	(1952)

One	of	the	foundations	of	active	engagement	is
curiosity—the	desire	to	learn,	or	the	thirst	for
knowledge.	Piquing	children’s	curiosity	is	half	the
battle.	Once	their	attention	is	mobilized	and	their	mind
in	search	of	an	explanation,	all	that	is	left	to	do	is	guide
them.	Starting	in	kindergarten,	the	most	curious
students	are	also	those	who	do	better	in	reading	and
math.17 	Keeping	children	curious	is	therefore	one	of
the	key	factors	for	successful	education.	But	what
exactly	is	curiosity?	To	what	Darwinian	necessity	does	it
respond,	and	to	what	kind	of	algorithm	does	it
correspond?
Rousseau	wrote	in	Emile,	or	On	Education,	“One	is

curious	only	to	the	extent	that	one	is	educated.”	Here
again,	he	was	wrong:	curiosity	is	not	an	effect	of
instruction,	a	function	that	we	must	acquire.	It	is	already
present	at	an	early	age	and	is	an	integral	part	of	our
human	brain	circuitry,	a	key	ingredient	of	our	learning
algorithm.	We	do	not	simply	passively	wait	for	new
information	to	reach	us—as	do,	foolishly,	most	current
artificial	neural	networks,	which	are	simple	input-output
functions	passively	submitted	to	their	environment.	As
Aristotle	noted,	we	humans	are	born	with	a	passion	to
know,	and	we	constantly	seek	novelty,	actively



exploring	our	environment	to	discover	things	we	can
learn.
Curiosity	is	a	fundamental	drive	of	the	organism:	a

propulsive	force	that	pushes	us	to	act,	just	like	hunger,
thirst,	the	need	for	security,	or	the	desire	to	reproduce.
What	role	does	it	play	in	survival?	It	is	in	the	interest	of
most	animal	species	(mammals,	but	also	many	birds
and	fish)	to	explore	their	environment	in	order	to	better
monitor	it.	It	would	be	risky	to	set	up	a	nest,	lair,
burrow,	den,	hole,	or	home	without	checking	the
surroundings.	In	an	unstable	universe	populated	by
predators,	curiosity	can	make	all	the	difference	between
life	and	death—and	this	is	why	most	animals	regularly
pay	security	visits	to	their	territory,	carefully	checking
for	anything	unusual	and	investigating	novel	sounds	or
sights	….	Curiosity	is	the	determination	that	pushes
animals	out	of	their	comfort	zones	in	order	to	acquire
knowledge.	In	an	uncertain	world,	the	value	of
information	is	high	and	must	ultimately	be	paid	in
Darwin’s	own	currency:	survival.
Curiosity	is	therefore	a	force	that	encourages	us	to

explore.	From	this	perspective,	it	resembles	the	drive
for	food	or	sexual	partners,	except	that	it	is	motivated
by	an	intangible	value:	the	acquisition	of	information.
Indeed,	neurobiological	studies	show	that,	in	our
brains,	the	discovery	of	previously	unknown	information
brings	its	own	reward:	it	activates	the	dopamine	circuit.



Remember,	this	is	the	circuit	that	fires	in	response	to
food,	drugs,	and	sex.	In	primates,	and	probably	in	all
mammals,	this	circuit	responds	not	solely	to	material
rewards,	but	also	to	new	information.	Some
dopaminergic	neurons	signal	a	future	information	gain,
as	if	the	anticipation	of	novel	information	brings	its	own
gratification.18 	Thanks	to	this	mechanism,	rats	can	be
conditioned	not	only	to	food	or	drugs,	but	also	to
novelty:	they	quickly	develop	a	preference	for	places
that	contain	new	objects	and	thereby	satisfy	their
curiosity,	as	opposed	to	dull	places	where	nothing	ever
happens.19 	We	do	not	act	any	differently	when	we
move	to	a	big	city	for	a	change	of	scenery	or	when,
eager	for	the	latest	gossip,	we	frantically	scroll	through
Facebook	or	Twitter.
Humans’	appetite	for	knowledge	passes	through	the

dopamine	circuit	even	when	it	involves	a	purely
intellectual	curiosity.	Imagine	lying	in	an	MRI	and	being
asked	Trivial	Pursuit	questions,	such	as,	“Who	was	the
president	of	the	United	States	when	Uncle	Sam	first	got
his	beard?”20 	For	each	question,	before	satisfying	your
curiosity,	the	experimenter	asks	how	eager	you	are	to
know	the	answer.	What	are	the	neuronal	correlates	of
this	subjective	feeling	of	being	curious?	The	degree	of
curiosity	that	you	report	correlates	tightly	with	the
activity	of	the	nucleus	accumbens	and	the	ventral
tegmental	area,	two	essential	regions	of	the	dopamine



brain	circuit.	The	more	curious	you	are,	the	more	these
regions	light	up.	Their	signals	arise	in	anticipation	of	the
answer:	even	before	your	curiosity	is	satisfied,	the
simple	fact	of	knowing	that	you	will	soon	know	the
answer	excites	your	dopaminergic	circuits.	Expectation
of	a	positive	event	brings	its	own	reward.
These	curiosity	signals	are	obviously	useful,	because

they	predict	how	much	you	learn.	Memory	and	curiosity
are	linked—the	more	curious	you	are	about	something,
the	more	likely	you	are	to	remember	it.	Curiosity	even
transfers	to	nearby	events:	when	your	curiosity	is
heightened,	you	remember	incidental	details	such	as
the	face	of	a	passerby	or	the	person	who	taught	you
the	information	that	you	were	so	eager	to	learn.	The
degree	of	craving	for	knowledge	controls	the	strength
of	memory.
Through	the	dopamine	circuit,	the	satisfaction	of	our

appetite	to	learn—or	even	the	mere	anticipation	of	that
satisfaction—is	deeply	rewarding.	Learning	possesses
intrinsic	value	for	the	nervous	system.	What	we	call
curiosity	is	nothing	more	than	the	exploitation	of	this
value.	As	such,	our	species	is	probably	special	because
of	its	unmatched	ability	to	learn.	As	hominization
progressed,	our	ability	to	represent	the	world
progressed.	We	are	the	only	animals	who	formulate
formal	theories	of	the	world	in	a	language	of	thought.
Science	has	become	our	ecological	niche:	Homo



sapiens	is	the	only	species	without	a	specific	habitat,
because	we	learn	to	adapt	to	any	environment.
Mirroring	the	extraordinary	expansion	of	our	learning

abilities,	human	curiosity	seems	to	have	increased
tenfold.	Over	the	course	of	our	evolution,	we	have
acquired	an	extended	form	of	curiosity,	called
“epistemic	curiosity”:	the	pure	desire	for	knowledge	in
all	fields,	including	the	most	abstract.	Like	other
mammals,	we	play	and	explore—not	only	through	real
movement,	but	also	through	thought	experiments.
Whereas	other	animals	visit	the	space	around	them,	we
explore	conceptual	worlds.	Our	species	also
experiences	specific	epistemic	emotions	that	guide	our
thirst	for	knowledge.	We	rejoice,	for	example,	in	the
symmetry	and	pure	beauty	of	mathematical	patterns:	a
clever	theorem	can	move	us	much	more	than	a	piece	of
chocolate.
Mirth	seems	to	be	one	of	those	uniquely	human

emotions	that	guide	learning.	Our	brain	triggers	a	mirth
reaction	when	we	suddenly	discover	that	one	of	our
implicit	assumptions	is	wrong,	forcing	us	to	drastically
revise	our	mental	model.	According	to	the	philosopher
Dan	Dennett,	hilarity	is	a	contagious	social	response
that	spreads	as	we	draw	each	other’s	attention	to	an
unexpected	piece	of	information.21 	And,	indeed,	all
things	being	equal,	laughing	during	learning	seems	to
increase	curiosity	and	enhance	subsequent	memory.22



WANTING	TO	KNOW:	THE	SOURCE	OF	MOTIVATION

Several	psychologists	have	tried	to	specify	the
algorithm	that	underlies	human	curiosity.	Indeed,	if	we
understood	it	better,	we	could	perhaps	gain	control
over	this	essential	ingredient	of	our	learning	scheme,
and	even	reproduce	it	in	a	machine	that	would
eventually	imitate	the	performance	of	the	human
species:	a	curious	robot.
This	algorithmic	approach	is	beginning	to	bear	fruit.

The	greatest	psychologists,	from	William	James	to	Jean
Piaget	to	Donald	Hebb,	have	speculated	on	the	nature
of	the	mental	operations	that	underlie	curiosity.
According	to	them,	curiosity	is	the	direct	manifestation
of	children’s	motivation	to	understand	the	world	and
build	a	model	of	it.23 	Curiosity	occurs	whenever	our
brains	detect	a	gap	between	what	we	already	know	and
what	we	would	like	to	know—a	potential	learning	area.
At	any	given	moment,	we	choose,	from	the	various
actions	that	are	accessible	to	us,	those	that	are	most
likely	to	reduce	this	knowledge	gap	and	acquire	useful
information.	According	to	this	theory,	curiosity
resembles	a	cybernetic	system	that	regulates	learning,
similar	to	the	famous	Watt	governor,	which	opens	or
closes	the	throttle	valve	on	a	steam	engine	in	order	to
regulate	steam	pressure	and	maintain	a	fixed	speed.
Curiosity	would	be	the	brain’s	governor,	a	regulator
that	seeks	to	maintain	a	certain	learning	pressure.



Curiosity	guides	us	to	what	we	think	we	can	learn.	Its
opposite,	boredom,	turns	us	away	from	what	we
already	know,	or	from	areas	that,	according	to	our	past
experience,	are	unlikely	to	have	anything	left	to	teach
us.
This	theory	explains	why	curiosity	is	not	directly

related	to	the	degree	of	surprise	or	novelty	but	instead
follows	a	bell	curve.24 	We	have	no	curiosity	for	the
unsurprising—things	that	we	have	seen	a	thousand
times	before	are	boring.	But	we	are	also	not	attracted
to	things	that	are	too	novel	or	surprising,	or	so
confusing	that	their	structure	eludes	us—their	very
complexity	deters	us.	Between	the	boredom	of	the	too
simple	and	the	repulsion	of	the	too	complex,	our
curiosity	naturally	directs	us	toward	new	and	accessible
fields.	But	this	attraction	keeps	changing.	As	we	master
them,	the	objects	that	once	seemed	attractive	lose	their
appeal,	and	we	redirect	our	curiosity	toward	new
challenges.	This	is	why	babies	initially	seem	so
passionate	about	the	most	trivial	things:	grasping	their
toes,	closing	their	eyes,	playing	peekaboo	….
Everything	is	new	to	them	and	is	a	potential	source	of
learning.	Once	they	squeeze	out	all	the	knowledge	that
can	be	gained	from	those	experiments,	they	lose
interest—for	exactly	the	same	reason	that	no	scientist
reproduces	Galileo’s	experiments	anymore:	what	is
known	becomes	boring.



The	same	algorithm	also	explains	why	we	sometimes
turn	away	from	an	area	that	once	seemed	attractive	but
proved	to	be	too	difficult.	Our	brain	evaluates	the
speed	of	learning,	and	curiosity	is	turned	off	if	our	brain
detects	that	we	are	not	progressing	fast	enough.	We	all
know	of	children	who,	say,	return	from	a	concert	with	a
passion	for	the	violin	…	only	to	give	it	up	after	a	few
weeks,	when	they	realize	that	mastery	of	the	instrument
does	not	come	easily.	Those	who	keep	playing	either
set	more	modest	goals	(e.g.,	play	a	little	better	every
day)	or,	if	they	truly	aim	to	become	professional
musicians,	sustain	their	motivation	through	parental	and
social	support	and	constant	reminders	of	their	long-
term	goals.
Two	French	engineers,	Frédéric	Kaplan	and	Pierre-

Yves	Oudeyer,	have	implemented	curiosity	in	a
robot.25 	Their	algorithm	includes	several	modules.	The
first	is	a	classic	artificial	learning	system	that	constantly
tries	to	predict	the	state	of	the	outside	world.	The
second,	more	innovative	module	evaluates	the
performance	of	the	first:	it	measures	the	recent	learning
speed	and	uses	it	to	predict	the	areas	in	which	the
robot	will	learn	the	most.	The	third	ingredient	is	a
reward	circuit	that	places	greater	value	on	actions	that
are	predicted	to	lead	to	more	efficient	learning.	As	a
result,	the	system	naturally	focuses	on	those	areas
where	it	believes	that	it	will	learn	the	most,	which	is	the



very	definition	of	curiosity,	according	to	Kaplan	and
Oudeyer.
When	their	curious	robot,	equipped	with	this

algorithm,	is	placed	on	a	baby	mat,	it	behaves	exactly
like	a	young	child.	For	a	few	minutes,	it	becomes
enthused	about	a	particular	object	and	spends	all	its
time,	for	example,	repeatedly	lifting	a	stuffed	elephant
ear.	As	it	progressively	learns	all	there	is	to	know	about
an	item,	its	curiosity	dwindles.	At	one	point,	it	turns
away	and	actively	seeks	another	source	of	stimulation.
After	an	hour,	it	stops	exploring	the	mat:	a	digital	form
of	boredom	sets	in	as	the	robot	comes	to	believe	that
everything	that	could	be	learned	is	now	known.
The	analogy	with	a	small	child	is	striking.	Even	babies

a	few	months	old	orient	toward	stimuli	of	intermediate
complexity,	neither	too	simple	nor	too	complex,	but
whose	structure	is	just	right	to	be	quickly	learnable.
(This	trait	of	infants’	curiosity	has	been	described	as	the
“Goldilocks	effect.”26 )	To	maximize	what	they	learn,
we	have	to	constantly	enrich	their	environment	with
new	objects	that	are	just	stimulating	enough	to	not	be
discouraging.	It	is	adults’	responsibility	to	provide	them
with	a	well-designed	pedagogical	hierarchy	that
progressively	takes	them	to	the	top,	constantly
stimulating	their	drive	for	knowledge	and	novelty.



Curiosity	is	an	essential	ingredient	of	our	learning
algorithm,	which	is	only	beginning	to	be	reproduced
in	machines.	Here,	a	small	robot	explores	a	play	mat.
Curiosity	is	implemented	by	a	reward	function	that
favors	the	choice	of	whichever	action	maximizes	the
potential	to	learn.	As	a	consequence,	the	robot



successively	tries	out	each	toy	on	the	mat	and	each
action	at	its	disposal.	Once	it	masters	one	aspect	of
the	world,	it	loses	interest	and	redirects	its	attention
elsewhere.

This	vision	of	curiosity	leads	to	an	interesting
prediction.	It	implies	that	in	order	for	children	to	be
curious,	they	must	be	aware	of	what	they	do	not	yet
know.	In	other	words,	they	must	possess	metacognitive
faculties	at	an	early	age.	“Metacognition”	is	cognition
over	cognition:	the	set	of	higher-order	cognitive
systems	that	monitor	our	mental	processes.	According
to	the	gap	theory	of	curiosity,	metacognitive	systems
must	constantly	supervise	our	learning,	evaluating	what
we	know	and	don’t	know,	whether	we	are	wrong	or	not,
whether	we	are	fast	or	slow,	and	so	on	and	so	forth—
metacognition	encompasses	everything	we	know	about
our	own	minds.
Metacognition	plays	a	key	role	in	curiosity.	Indeed,	to

be	curious	is	to	want	to	know,	and	that	implies	knowing
what	you	don’t	already	know.	And	once	again,	recent
experiments	confirm	that	from	the	age	of	one	and
perhaps	even	earlier,	children	understand	that	there	are
things	they	do	not	know.27 	Indeed,	babies	of	that	age
readily	turn	to	their	caregiver	whenever	they	are	unable
to	solve	a	problem	alone.	Knowing	that	they	don’t
know	leads	them	to	ask	for	more	information.	This	is	the



early	manifestation	of	epistemic	curiosity:	the	irresistible
desire	to	know.

THREE	WAYS	SCHOOL	CAN	KILL	CURIOSITY

All	parents	are	nostalgic	for	the	days	when	their	toddler
was	filled	with	curiosity.	Between	ages	two	and	five,
children	are	curious	about	everything.	Their	favorite
word	is	often	why:	they	never	stop	experimenting	on
the	world	and	questioning	adults	in	order	to	quench
their	thirst	for	knowledge.	Surprisingly,	however,	this
appetite,	which	seems	insatiable,	eventually	dies	out,
often	after	a	few	years	of	school.	Some	children	remain
curious	about	everything,	but	many	close	themselves
off	to	such	intrigue.	Their	active	engagement	turns	into
dull	passivity.	Can	the	science	of	curiosity	explain	why?
We	do	not	yet	have	all	the	answers,	but	I	would	like	to
propose	a	few	hypotheses.
First,	children	may	lose	their	curiosity	because	they

lack	cognitive	stimulation	tailored	to	their	needs.
According	to	the	algorithm	we	have	just	described,	it	is
entirely	normal	for	curiosity	to	dwindle	over	time.	As
learning	progresses,	the	expected	learning	gain	shrinks:
the	better	we	master	a	field,	the	more	we	reach	the
limits	of	what	it	can	offer,	and	the	less	interested	we	are
in	it.	To	maintain	curiosity,	schools	must	therefore
continually	provide	children’s	supercomputing	brains
with	stimulants	that	match	their	intelligence.	This	is	not



always	the	case.	In	a	standard	classroom,	the	most
advanced	students	often	lack	stimulation:	after	a	few
months,	their	curiosity	fades	and	they	no	longer	expect
much	from	school,	because	their	metacognitive	system
has	learned	that,	unfortunately,	they	are	unlikely	to
learn	much	more.
At	the	other	end	of	the	spectrum,	students	who

struggle	in	school	may	wither	away	for	the	opposite
reason.	Metacognition	remains	the	main	culprit:	after	a
while,	they	no	longer	have	any	reason	to	be	curious,
because	they	have	learned	…	that	they	do	not	succeed
in	learning.	Their	past	experience	has	engraved	a
simple	(though	false)	rule	in	the	depths	of	their
metacognitive	circuits:	I	am	incapable	of	learning	such
and	such	topic	(math,	reading,	history,	whatever).	Such
dismay	is	not	uncommon:	many	girls	convince
themselves	that	mathematics	is	not	for	them,28 	and
children	from	underprivileged	neighborhoods
sometimes	come	to	believe	that	school	is	hostile	for
them	and	teaches	nothing	useful	for	their	future.	Such
metacognitive	judgments	are	disastrous	because	they
demotivate	students	and	nip	their	curiosity	in	the	bud.
The	solution	is	to	boost	these	children’s	confidence

back	up,	step	by	step,	by	showing	them	that	they	are
perfectly	capable	of	learning,	provided	the	problems
are	adapted	to	their	level,	and	that	learning	brings	its
own	reward.	The	theory	of	curiosity	says	that	when



children	are	discouraged,	whether	they	are	far	ahead	or
far	behind	at	school,	what	matters	most	is	to	restore
their	desire	to	learn	by	offering	them	stimulating
problems	carefully	tailored	to	their	current	level.	First,
they	rediscover	the	pleasure	of	learning	something	new
—and	then,	slowly,	their	metacognitive	system	learns
that	they	can	learn,	which	puts	their	curiosity	back	on
track.
Another	scenario	that	can	lead	to	children	losing

interest	is	when	curiosity	is	punished.	A	child’s	appetite
for	discovery	can	be	ruined	by	an	overly	rigid
pedagogical	strategy.	Teaching	through	traditional
lectures	tends	to	discourage	children	from	participating
or	even	from	thinking.	It	can	convince	children	that	they
are	simply	being	asked	to	sit	there	and	remain	quiet
until	the	end	of	class.	The	neurophysiological
interpretation	of	this	situation	is	simple:	within	the
dopamine	circuit,	the	reward	signals	induced	by
curiosity	and	its	satisfaction	compete	with	external
rewards	and	punishments.	It	is	therefore	possible	to
discourage	curiosity	by	punishing	each	exploration
attempt.	Picture	a	child	who	repeatedly	tries	to
participate	and	is	systematically	reprimanded,	mocked,
or	punished:	“Silly	question.	You’d	better	be	quiet	or
you’ll	stay	an	extra	half	an	hour	after	school	….”	This
child	quickly	learns	to	inhibit	their	curiosity	drive	and
stop	participating	in	class:	the	curiosity-based	reward



that	the	dopamine	system	expects—the	pleasure	of
learning	something	new—is	largely	countered	by	the
direct	negative	signals	that	the	same	circuit	receives.
Repeated	punishment	leads	to	learned	helplessness,	a
kind	of	physical	and	mental	paralysis	associated	with
stress	and	anxiety,	which	has	been	shown	to	inhibit
learning	in	animals.29

The	solution?	Most	teachers	already	know	it.	It	is
simply	a	matter	of	rewarding	curiosity	instead	of
punishing	it:	encouraging	questions	(however	imperfect
they	may	be),	asking	children	to	give	presentations	on
subjects	they	love,	rewarding	them	for	taking	initiative
….	The	neuroscience	of	motivation	is	extremely	clear:
the	desire	to	do	action	X	must	be	associated	with	an
expected	reward,	be	it	material	(food,	comfort,	social
support)	or	cognitive	(acquisition	of	information).	Too
many	children	lose	all	curiosity	because	they	learn,	at
their	own	expense,	to	expect	no	reward	from	school.
(Grades,	which	I	will	get	to	shortly,	often	contribute	to
this	sad	state	of	affairs.)
The	third	factor	that	can	discourage	curiosity	is	the

social	transmission	of	knowledge.	Remember	that	two
modes	of	learning	coexist	in	the	human	species:	the
active	mode,	where	children	constantly	experiment	and
question	themselves	like	good	budding	scientists,	and
the	receptive	mode,	where	they	simply	record	what
others	teach	them.	School	often	encourages	only	the



second	mode—and	it	may	even	discourage	the	first,	if
children	assume	that	teachers	always	know	everything
better	than	students	do.
Can	a	teacher’s	attitude	really	kill	a	child’s	natural

curiosity?30 	Sadly,	recent	experiments	suggest	that	the
answer	is	yes.	In	her	childhood	cognition	lab	at	MIT,	the
American	developmental	psychologist	Laura	Schulz
presents	kindergartners	with	a	strange	contraption:	a
set	of	plastic	tubes	hidden	in	various	places	that	contain
all	sorts	of	unexpected	toys,	such	as	a	mirror,	a	horn,	a
game	with	lights,	and	a	music	box.	When	you	give	such
a	gadget	to	children	without	saying	anything,	you
immediately	set	off	their	curiosity:	they	explore,
rummage,	forage,	and	poke	around	until	they	find	most
of	the	hidden	rewards.	Now,	take	a	new	group	of
kindergartners	and	put	them	into	the	passive,	receptive
pedagogical	mode.	All	you	have	to	do	is	give	them	the
object	while	saying,	“Look,	let	me	show	you	my	toy.
This	is	what	it	does	…”	and	then	play	the	music	box,	for
instance.	One	might	think	that	this	would	stimulate	the
children’s	curiosity	…	but	it	has	the	opposite	effect:
exploration	massively	decreases	following	this	kind	of
introduction.	Children	seem	to	make	the	(often	correct)
assumption	that	the	teacher	is	trying	to	help	them	as
much	as	possible,	and	that	he	has	therefore	introduced
them	to	all	the	interesting	functions	of	the	device.	In



this	context,	there	is	no	need	to	search:	curiosity	is
inhibited.
Further	experiments	show	that	children	take	into

account	the	teacher’s	past	behavior.	When	a	teacher
always	makes	exhaustive	demonstrations,	students	lose
curiosity.	If	the	teacher	demonstrates	one	of	the
functions	of	a	new	toy,	children	do	not	explore	all	its
facets,	because	they	think	that	the	teacher	has	already
explained	everything	there	is	to	know.	If,	on	the
contrary,	the	teacher	gives	evidence	that	he	doesn’t
always	know	everything,	then	the	children	keep
searching.
So,	what	is	the	right	approach?	I	suggest	always

keeping	the	concept	of	active	engagement	in	mind.
Maximally	engaging	a	child’s	intelligence	means
constantly	feeding	them	with	questions	and	remarks
that	stimulate	their	imagination	and	make	them	want	to
go	deeper.	It	would	be	out	of	the	question	to	let
students	discover	everything	for	themselves—this
would	be	falling	back	into	the	trap	of	discovery-based
learning.	The	ideal	scenario	is	to	offer	the	guidance	of	a
structured	pedagogy	while	encouraging	children’s
creativity	by	letting	them	know	that	there	are	still	a
thousand	things	to	discover.	I	remember	a	teacher	who,
just	before	summer	vacation,	told	me,	“You	know,	I	just
read	a	little	math	problem	I	couldn’t	solve	….”	And	this



is	how	I	found	myself	ruminating	on	this	question	all
summer,	trying	to	do	better	than	the	teacher	could	….
Mustering	children’s	active	engagement	goes	hand	in

hand	with	another	necessity:	tolerating	their	errors
while	quickly	correcting	them.	This	is	our	third	pillar	of
learning.







CHAPTER	9

Error	Feedback

Everyone	should	learn	to	happily	make	errors	….
To	think	is	to	move	from	one	error	to	the	next.

Alain,	Propos	sur	l’éducation	(1932)

The	only	man	who	never	makes	a	mistake	is	the
man	who	never	does	anything.

Attributed	to	Theodore	Roosevelt	(1900)

IN	1940,	THE	YOUNG	ALEXANDER	GROTHENDIECK	(1928–2014)
WAS	ONLY	eleven	or	twelve	years	old.	He	did	not	know
that	he	would	become	one	of	the	most	influential
mathematicians	of	the	twentieth	century	who	would
inspire	a	whole	generation.	(His	revolutionary	ideas
played	a	major	role	in	the	founding,	in	1958,	of	the
famous	Institut	des	Hautes	Études	Scientifiques,	in
France,	which	has	yielded	more	than	a	dozen	Fields
Medal	winners.)	But	young	Alexander	was	already
doing	mathematics	…	with	moderate	success.	Here	is
an	excerpt	from	his	memoir:



Around	the	age	of	eleven	or	twelve,	while	I	was
detained	at	the	concentration	camp	of	Rieucros
(near	Mende),	I	discovered	compass	tracing
games.	I	was	particularly	thrilled	by	the	six-
branched	rosettes	that	one	gets	when	dividing	a
circle	into	six	equal	parts	by	turning	a	compass
six	times	around	the	circumference	and	returning
right	back	to	the	starting	point.	This
experimental	observation	convinced	me	that	the
length	of	the	circumference	was	exactly	six	times
that	of	the	radius.	When	later	…	I	saw	in	a
textbook	that	the	relationship	was	supposed	to
be	much	more	complicated,	that	we	had	L	=	2	π
R	with	π	=	3.14	…,	I	was	convinced	that	the	book
was	wrong,	that	its	authors	…	must	have	ignored
this	very	simple	tracing	exercise	that	clearly
showed	that	π	=	3.
The	confidence	that	a	child	can	have	in	his

own	insight,	by	trusting	his	own	faculties	rather
than	taking	for	granted	the	things	he	learns	at



school	or	reads	in	a	textbook,	is	a	precious	thing.
Yet	this	confidence	is	constantly	discouraged.
Many	will	see	in	the	experience	I	just	reported

the	example	of	a	childish	brashness	that	later
had	to	bow	in	front	of	the	received	knowledge—
the	whole	situation	bordering	on	the	ridiculous.
As	I	experienced	this	episode,	however,	there
was	no	sense	of	disappointment	or	ridicule,	but
just	the	feeling	of	having	made	a	genuine
discovery	…:	that	of	a	mistake.1

What	an	extraordinary	confession,	and	what	a	lesson
in	humility,	when	one	of	the	world’s	greatest
mathematicians	admits	to	making	the	colossal	blunder
of	believing	that	pi	equals	three	….	Yet,	Grothendieck
was	quite	right	about	one	thing:	the	key	role	of	errors	in
learning.	Making	mistakes	is	the	most	natural	way	to
learn.	The	two	terms	are	virtually	synonymous,	because
every	error	offers	an	opportunity	to	learn.
The	Shadoks,	a	French	cartoon	that	was	popular

when	I	was	a	child,	whimsically	elevated	this	concept	to
the	rank	of	a	general	principle:	“Only	by	continually
trying	do	you	end	up	succeeding	….	In	other	words,	the
more	you	fail,	the	more	likely	you	are	to	succeed!”	And
with	perfect	logic,	since	the	rocket	they	were	trying	to
launch	had	only	one	chance	in	a	million	of	taking	off,



the	Shadoks	hastily	ran	through	the	first	999,999	failures
in	order	to	finally	reach	success	….
Humor	aside,	it	would	be	practically	impossible	to

progress	if	we	did	not	start	off	by	failing.	Errors	always
recede	as	long	as	we	receive	feedback	that	tells	us	how
to	improve.	This	is	why	error	feedback	is	the	third	pillar
of	learning,	and	one	of	the	most	influential	educational
parameters:	the	quality	and	accuracy	of	the	feedback
we	receive	determines	how	quickly	we	learn.2

SURPRISE:	THE	DRIVING	FORCE	OF	LEARNING

Remember	the	learning	algorithms	that	we	discussed	in
the	first	chapter,	which	enabled	a	hunter	to	adjust	his
viewfinder	or	an	artificial	neural	network	to	tune	its
hidden	weights?	The	idea	is	simple:	you	first	try,	even	if
it	means	failing,	and	the	size	and	direction	of	your	error
tells	you	how	to	improve	on	the	next	trial.	Thus,	the
hunter	aims,	shoots,	evaluates	how	much	he	missed	the
target,	and	uses	this	error	feedback	to	adjust	his	next
shot.	This	is	how	marksmen	fine-tune	their	rifles—and
how,	on	a	larger	scale,	artificial	neural	networks	adjust
the	millions	of	parameters	that	define	their	internal
models	of	the	outside	world.
Does	the	brain	work	the	same	way?	As	early	as	the

1970s,	data	started	to	accumulate	in	favor	of	this
hypothesis.	Two	American	researchers,	Robert	Rescorla
and	Allan	Wagner,	made	the	following	hypothesis:	the



brain	learns	only	if	it	perceives	a	gap	between	what	it
predicts	and	what	it	receives.	No	learning	is	possible
without	an	error	signal:	“Organisms	only	learn	when
events	violate	their	expectations.”3 	In	other	words,
surprise	is	one	of	the	fundamental	drivers	of	learning.
The	Rescorla-Wagner	theory	nicely	explains	the

details	of	a	learning	paradigm	called	“classical
conditioning.”	Everyone	has	heard	of	Pavlov’s	dog.	In
Pavlovian	conditioning	experiments,	a	dog	hears	a	bell,
which	is	an	initially	neutral	and	inefficient	stimulus.	After
repeated	pairing	with	food,	however,	the	same	bell
ends	up	triggering	a	conditioned	reflex.	The	dog
salivates	whenever	he	hears	the	bell,	because	he	has
learned	that	this	sound	systematically	precedes	the
arrival	of	food.	How	does	the	theory	explain	these
findings?	The	Rescorla-Wagner	rule	assumes	that	the
brain	uses	sensory	inputs	(the	sensations	generated	by
the	bell)	to	predict	the	probability	of	a	subsequent
stimulus	(food).	It	works	like	this:

The	brain	generates	a	prediction	by	computing	a
weighted	sum	of	its	sensory	inputs.

It	then	calculates	the	difference	between	this
prediction	and	the	actual	stimulus	it	receives:	this
is	the	prediction	error,	a	fundamental	concept	of
the	theory,	which	measures	the	degree	of
surprise	associated	with	each	stimulus.



The	brain	then	uses	this	surprise	signal	to	correct
its	internal	representation:	the	internal	model
changes	in	direct	proportion	to	both	the	strength
of	the	stimulus	and	the	value	of	the	prediction
error.	The	rule	is	such	that	it	guarantees	that	the
next	prediction	will	be	closer	to	reality.

This	theory	already	contains	all	the	seeds	of	our	three
pillars	of	learning:	learning	occurs	only	if	the	brain
selects	the	appropriate	sensory	inputs	(attention),	uses
them	to	produce	a	prediction	(active	engagement),	and
evaluates	the	accuracy	of	the	prediction	(error
feedback).
The	equation	that	Rescorla	and	Wagner	introduced	in

1972	was	remarkably	prescient.	It	is	practically	identical
to	the	“delta	rule”	that	was	later	used	in	artificial	neural
networks—and	both	are	simplified	versions	of	the	error
backpropagation	rule,	which	is	now	used	in	virtually	all
current	supervised	learning	systems	(where	the	network
is	given	explicit	feedback	about	the	response	it	should
have	produced).	Moreover,	in	reward-based	machine
learning	(where	the	network	is	just	told	how	wrong	it	is),
a	similar	equation	can	still	be	used:	the	network
predicts	the	reward,	and	the	difference	between	that
prediction	and	the	actual	reward	is	what	is	used	to
update	the	internal	representation.



We	can	therefore	affirm	that	today’s	silicon-based
learning	machines	rely	on	equations	directly	inspired	by
neuroscience.	As	we	saw	above,	the	human	brain	goes
even	further:	to	extract	as	much	information	as	possible
from	each	learning	episode,	it	uses	a	language	of
thought	and	statistical	models	much	more	refined	than
those	of	current	neural	networks.	However,	Rescorla
and	Wagner’s	basic	idea	remains	correct:	the	brain	tries
to	predict	the	inputs	it	receives	and	adjusts	these
predictions	according	to	the	degree	of	surprise,
improbability,	or	error.	To	learn	is	to	curtail	the
unpredictable.
Rescorla	and	Wagner’s	theory	had	considerable

impact	because	it	represented	a	major	improvement
over	previous	theories	based	on	the	concept	of
associative	learning.	In	the	past,	the	common	belief	was
that	the	brain	merely	learned	to	associate	the	sound	of
a	bell	with	food,	rather	than	predicting	one	from	the
other.	According	to	this	associationist	view,	the	brain
records	all	coincidences	between	stimuli	and	responses
in	a	purely	passive	fashion.	However,	even	for	Pavlovian
conditioning,	this	vision	is	demonstrably	false.4 	Even	a
dog’s	brain	is	not	a	passive	organ	that	simply	absorbs
associations.	Learning	is	active	and	depends	on	the
degree	of	surprise	linked	to	the	violation	of	our
expectations.



Forward	blocking	provides	one	of	the	most
spectacular	refutations	of	the	associationist	view.5 	In
blocking	experiments,	an	animal	is	given	two	sensory
clues,	say,	a	bell	and	a	light,	both	of	which	predict	the
imminent	arrival	of	food.	The	trick	is	to	present	them
sequentially.	We	start	with	the	light:	the	animal	learns
that	whenever	the	light	is	on,	it	predicts	the	arrival	of
food.	Only	then	do	we	introduce	dual	trials	where	both
light	and	bell	predict	food.	Finally,	we	test	the	effect	of
the	bell	alone.	Surprise:	it	has	no	effect	whatsoever!
Upon	hearing	the	bell,	the	animal	does	not	salivate;	it
seems	utterly	oblivious	to	the	repeated	association
between	the	bell	and	the	food	reward.	What
happened?	The	finding	is	incompatible	with
associationism,	but	it	fits	perfectly	with	the	Rescorla-
Wagner	theory.	The	key	idea	is	that	the	acquisition	of
the	first	association	(light	and	food)	blocked	the	second
one	(bell	and	food).	Why?	Because	the	prediction
based	on	light	alone	suffices	to	explain	everything.	The
animal	already	knows	that	the	light	predicts	the	food,
so	its	brain	does	not	generate	any	prediction	error
during	the	second	part	of	the	test,	where	the	light	and
the	bell	together	predict	the	food.	Zero	error,	zero
learning—and	thus,	the	dog	does	not	acquire	any
knowledge	of	the	association	between	the	sound	and
the	food.	Whichever	rule	is	learned	first	blocks	the
learning	of	the	second.



This	forward	blocking	experiment	clearly
demonstrates	that	learning	does	not	work	by
association.	After	all,	the	bell-food	pairing	was	repeated
hundreds	of	times,	yet	it	failed	to	induce	any	learning.
The	experiment	also	shows	that	no	learning	occurs	in
the	absence	of	surprise:	a	prediction	error	is	essential	to
learning—at	least	in	dogs.	And	growing	evidence
suggests	that	prediction-error	systems	are	present	in
the	brains	of	all	sorts	of	species.
It	is	important	to	note	that	the	error	signal	we	are

talking	about	is	an	internal	signal	that	travels	in	the
brain.	We	do	not	need	to	make	an	actual	error	in	order
to	learn—all	we	need	is	a	discrepancy	between	what	we
expected	and	what	we	got.	Consider	a	simple	binary
choice—say,	whether	Pablo	Picasso’s	second	name	is
Diego	or	Rodrigo.	Suppose	that	I	am	lucky	enough	to
venture	a	correct	guess	on	the	first	try	(by	saying	Diego
—his	full	name	is	actually	Pablo	Diego	José	Francisco
de	Paula	Juan	Nepomuceno	María	de	los	Remedios
Cipriano	de	la	Santísima	Trinidad	Ruiz	y	Picasso!).	Do	I
learn	anything?	Of	course.	Even	though	I	answered
correctly	on	the	first	try,	my	confidence	was	low.	By
chance	alone,	I	had	only	a	fifty-fifty	chance	of	being
right.	Because	I	was	uncertain,	the	feedback	I	received
did	provide	new	information:	it	assured	me	that	my
randomly	chosen	answer	was	actually	100	percent	right.
According	to	the	Rescorla-Wagner	rule,	this	new



information	generates	an	error	signal	that	measures	the
gap	between	what	I	predicted	(a	50	percent	chance	of
being	right)	and	what	I	now	know	(a	100	percent
certainty	of	knowing	the	right	answer).	In	my	brain,	this
error	signal	spreads	and	updates	my	knowledge,	thus
increasing	my	chances	of	responding	“Diego”	the	next
time	I’m	asked.	It	would	be	wrong,	therefore,	to	believe
that	what	matters	for	learning	is	to	make	a	lot	of
mistakes,	like	the	Shadoks	hastily	failing	their	first
999,999	rocket	launches!	What	matters	is	receiving
explicit	feedback	that	reduces	the	learner’s	uncertainty.
No	surprise,	no	learning:	this	basic	rule	now	seems	to

have	been	validated	in	all	kinds	of	organisms—
including	young	children.	Remember	that	surprise	is
one	of	the	basic	indicators	of	babies’	early	skills:	they
stare	longer	at	any	display	that	magically	presents	them
with	surprising	events	that	violate	the	laws	of	physics,
arithmetic,	probability,	or	psychology	(see	figure	on
page	55	and	figure	5	in	the	color	insert).	But	children
do	not	just	stare	every	time	they	are	surprised:	they
demonstrably	learn.
To	reach	this	conclusion,	American	psychologist	Lisa

Feigenson	performed	a	series	of	experiments	showing
that	whenever	children	perceive	an	event	as	impossible
or	improbable,	learning	is	triggered.6 	For	instance,
when	babies	see	an	object	mysteriously	passing
through	a	wall,	they	stare	at	this	impossible	scene	…



and	subsequently	remember	better	the	sound	that	the
object	made,	or	even	the	verb	that	an	adult	used	to
describe	the	action	(“Look,	I	just	bleeked	the	toy.”).	If
we	give	the	babies	this	object,	they	play	with	it	for
much	longer	than	they	do	with	a	similar	toy	that	did	not
violate	the	laws	of	physics.	Their	seemingly	playful
behavior	actually	shows	that	they	are	actively	trying	to
understand	what	happened.	As	scientists	in	the	crib,
they	perform	experiments	in	an	attempt	to	replicate
what	they	saw.	For	example,	if	the	object	just	passed
through	a	wall,	they	hit	it,	as	if	to	test	its	solidity;
whereas	if	they	saw	it	violate	the	laws	of	gravity	and
remain	mysteriously	suspended	in	midair,	they	make	it
fall	from	a	table,	as	if	to	check	its	levitation	powers.	In
other	words,	the	nature	of	the	unpredictable	scene	that
they	observe	determines	how	they	later	act	to	adjust
their	hypotheses.	This	is	exactly	what	the	theory	of	error
backpropagation	predicts:	every	unexpected	event
leads	to	corresponding	adjustment	of	the	internal
model	of	the	world.
All	these	phenomena	have	been	documented	in

eleven-month-old	babies,	but	they	are	probably
present	at	a	much	earlier	age.	Learning	by	error
correction	is	universally	widespread	in	the	animal	world,
and	there	is	every	reason	to	believe	that	error	signals
govern	learning	from	the	very	beginning	of	life.



THE	BRAIN	SWARMS	WITH	ERROR	MESSAGES

Error	signals	play	such	a	fundamental	role	in	learning
that	virtually	all	brain	areas	can	be	shown	to	transmit
error	messages	(see	figure	17	in	the	color	insert).7 	Let’s
start	with	an	elementary	example:	Imagine	hearing	a
series	of	identical	notes,	A	A	A	A	A.	Each	note	elicits	a
response	in	the	auditory	areas	of	your	brain—but	as	the
notes	repeat,	those	responses	progressively	decrease.
This	is	called	“adaptation,”	a	deceptively	simple
phenomenon	that	shows	that	your	brain	is	learning	to
predict	the	next	event.	Suddenly,	the	note	changes:	A
A	A	A	A#.	Your	primary	auditory	cortex	immediately
shows	a	strong	surprise	reaction:	not	only	does	the
adaptation	fade	away,	but	additional	neurons	begin	to
vigorously	fire	in	response	to	the	unexpected	sound.
And	it	is	not	just	repetition	that	leads	to	adaptation:
what	matters	is	whether	the	notes	are	predictable.	For
instance,	if	you	hear	an	alternating	set	of	notes,	such	as
A	B	A	B	A,	your	brain	gets	used	to	this	alternation,	and
the	activity	in	your	auditory	areas	again	decreases.	This
time,	however,	it	is	an	unexpected	repetition,	such	as	A
B	A	B	B,	that	triggers	a	surprise	response.8

The	auditory	cortex	seems	to	perform	a	simple
calculation:	it	uses	the	recent	past	to	predict	the	future.
As	soon	as	a	note	or	a	group	of	notes	repeats,	this
region	concludes	that	it	will	continue	to	do	so	in	the
future.	This	is	useful	because	it	keeps	us	from	paying



too	much	attention	to	boring,	predictable	signals.	Any
sound	that	repeats	is	squashed	at	the	input	side,
because	its	incoming	activity	is	canceled	by	an	accurate
prediction.	As	long	as	the	input	sensory	signal	matches
the	prediction	that	the	brain	generates,	the	difference	is
zero,	and	no	error	signal	gets	propagated	to	higher-
level	brain	regions.	Subtracting	the	prediction	shuts
down	the	incoming	inputs—but	only	as	long	as	they	are
predictable.	Any	sound	that	violates	our	brain’s
expectations,	on	the	contrary,	is	amplified.	Thus,	the
simple	circuit	of	the	auditory	cortex	acts	as	a	filter:	it
transmits	to	the	higher	levels	of	the	cortex	only	the
surprising	and	unpredictable	information	which	it
cannot	explain	by	itself.
Whatever	input	a	brain	region	cannot	explain	is

therefore	passed	on	to	the	next	level,	which	then
attempts	to	make	sense	of	it.	We	may	conceive	of	the
cortex	as	a	massive	hierarchy	of	predictive	systems,
each	of	which	tries	to	explain	the	inputs	and	exchanges
the	remaining	error	messages	with	the	others,	in	the
hope	that	they	may	do	a	better	job.
For	instance,	hearing	the	sequence	C	C	G	generates

a	low-level	error	signal	in	the	auditory	cortex,	because
the	final	G	differs	from	the	previous	notes.	Higher-level
regions,	however,	may	recognize	the	whole	sequence
as	a	known	melody	(the	beginning	of	“Twinkle,	Twinkle,
Little	Star”).	The	surprise	caused	by	the	final	G	is	thus



only	transient:	it	is	quickly	explained	by	a	higher-level
representation	of	the	whole	melody,	and	the	surprise
signal	stops	there—the	G,	although	new,	does	not
generate	any	surprise	in	the	inferior	prefrontal	cortex,
which	can	encode	entire	musical	phrases.	On	the	other
hand,	the	repetition	of	C	C	C	may	have	the	opposite
effect:	because	it	is	monotonous,	it	does	not	generate
any	error	signal	in	early	auditory	areas,	but	it	creates
surprise	in	higher-level	areas	that	code	for	the	melody,
which	predicted	a	rise	to	G	rather	than	yet	another	C.
Here,	the	surprise	is	that	there	is	no	surprise!	Even
macaque	monkeys,	like	us	humans,	possess	these	two
levels	of	auditory	processing:	the	local	processing	of
individual	notes	in	the	auditory	cortex	and	the	global
representation	of	the	melody	in	the	prefrontal	cortex.9

Error	signals	such	as	these	seem	to	be	present	in
every	region	of	the	brain.	All	over	the	cortex,	neurons
adapt	to	repeated	and	predictable	events,	and	react
with	an	increased	discharge	whenever	a	surprising
event	occurs.	The	only	thing	that	changes	from	one
brain	area	to	the	next	is	the	type	of	violation	that	can
be	detected.	In	the	visual	cortex,	the	presentation	of	an
unexpected	image	is	what	triggers	a	surge	of
activity.10 	Language	areas,	for	their	part,	react	to
abnormal	words	within	a	sentence.	Take,	for	example,
the	following	sentence:
“I	prefer	to	eat	with	a	fork	and	a	camel.”



Your	brain	has	just	generated	an	N400	wave,	an	error
signal	evoked	by	a	word	or	an	image	which	is
incompatible	with	the	preceding	context.11 	As	its
name	suggests,	this	is	a	negative	response	that	occurs
at	about	four	hundred	milliseconds	after	the	anomaly
and	arises	from	neuronal	populations	of	the	left
temporal	cortex	that	are	sensitive	to	word	meaning.	On
the	other	hand,	Broca’s	area	in	the	inferior	prefrontal
cortex	reacts	to	errors	of	syntax,	when	the	brain
predicts	a	certain	category	of	word	and	receives
another,12 	as	in	the	following	sentence:
“Don’t	hesitate	to	take	your	whenever	medication

you	feel	sick.”
This	time,	just	after	the	unexpected	word

“whenever,”	the	areas	of	your	brain	that	specialize	in
syntax	emitted	a	negative	wave	immediately	followed
by	a	P600	wave—a	positive	peak	that	occurs	around	six
hundred	milliseconds.	This	response	indicates	that	your
brain	detected	a	grammar	error	and	is	trying	to	repair
it.
The	brain	circuit	in	which	predictive	and	error	signals

have	been	best	demonstrated	is	the	reward	circuit.13

The	dopamine	network	not	only	responds	to	actual
rewards,	but	it	also	constantly	anticipates	them.
Dopaminergic	neurons	located	in	a	small	nucleus	of
cells	called	the	“ventral	tegmental	area”	do	not	simply
respond	to	the	pleasures	of	sex,	food,	or	drink;	they



actually	signal	the	difference	between	the	expected
reward	and	the	one	that	was	obtained,	i.e.,	the
prediction	error.	So,	if	an	animal	receives	a	reward
without	any	warning,	say,	an	unexpected	drop	of	sugar
water,	this	pleasant	surprise	results	in	neuronal	firing.
But	if	this	reward	is	preceded	by	a	signal	that	predicts
it,	then	the	same	sweet	syrup	no	longer	causes	any
reaction.	It	is	now	the	signal	itself	that	causes	a	surge	of
activity	in	dopamine	neurons:	learning	shifts	the
response	closer	to	the	signal	that	predicts	the	reward.
Thanks	to	this	predictive	learning	mechanism,

arbitrary	signals	can	become	the	bearers	of	reward	and
trigger	a	dopamine	response.	This	secondary	reward
effect	has	been	demonstrated	with	money	in	humans
and	with	the	mere	sight	of	a	syringe	in	drug	addicts.	In
both	cases,	the	brain	anticipates	future	rewards.	As	we
saw	in	the	first	chapter,	such	a	predictive	signal	is
extremely	useful	for	learning,	because	it	allows	the
system	to	criticize	itself	and	to	foresee	the	success	or
failure	of	an	action	without	having	to	wait	for	external
confirmation.	This	is	why	actor-critic	architectures,	in
which	one	neural	network	learns	to	criticize	the	actions
of	another,	are	now	universally	used	in	artificial
intelligence	to	solve	the	most	complex	problems,	such
as	learning	to	play	the	game	of	Go.	Generating	a
prediction,	detecting	one’s	error,	and	correcting	oneself
are	the	very	foundations	of	effective	learning.



ERROR	FEEDBACK	IS	NOT	SYNONYMOUS	WITH
PUNISHMENT

I	have	often	been	struck	by	the	fact	that	science
teachers,	even	more	than	other	teachers,	cannot
understand	that	their	students	may	not
understand.	Very	few	of	them	have	delved
deeply	into	the	topics	of	error,	ignorance,	and
thoughtlessness.

Gaston	Bachelard,	The	Formation	of	the	Scientific
Mind	(1938)

How	can	we	make	the	most	of	the	error	signals	that	our
neurons	constantly	exchange?	For	a	child	or	an	adult	to
learn	effectively,	their	environment	(be	it	parents,
school,	university	…	or	just	a	video	game)	must	provide
them	with	quick	and	accurate	feedback.	Learning	is
faster	and	easier	when	students	receive	detailed	error
feedback	that	tells	them	precisely	where	they	stumbled
and	what	they	should	have	done	instead.	By	providing
rapid	and	precise	feedback	on	errors,	teachers	can
considerably	enrich	the	information	available	to	their
students	to	correct	themselves.	In	artificial	intelligence,
this	type	of	learning,	known	as	“supervised,”	is	the
most	effective,	because	it	allows	the	machine	to	quickly
identify	the	source	of	failure	and	to	amend	itself.
It	is	crucial	to	understand,	however,	that	such	error

feedback	has	nothing	to	do	with	punishment.	We	do



not	punish	an	artificial	neural	network;	we	simply	tell	it
about	the	responses	that	it	got	wrong.	We	provide	it
with	a	maximally	informative	signal	that	notifies	it,	bit	by
bit,	of	the	nature	and	sign	of	its	errors.
In	this	respect,	computer	science	and	pedagogy	truly

see	eye	to	eye.	Indeed,	the	meta-analyses	conducted
by	Australian	education	specialist	John	Hattie	clearly
show	that	the	quality	of	the	feedback	that	students
receive	is	one	of	the	determinants	of	their	academic
success.14 	Setting	a	clear	goal	for	learning	and
allowing	students	to	approach	it	gradually,	without
dramatizing	their	inevitable	mistakes,	are	the	keys	to
success.
Good	teachers	are	already	well	aware	of	these	ideas.

Every	day,	they	witness	the	Roman	dictum	errare
humanum	est:	to	err	is	human.	With	a	compassionate
eye,	they	look	kindly	upon	their	students’	mistakes,
because	they	realize	that	no	one	learns	without	making
errors.	They	know	that	they	should	diagnose,	as
dispassionately	as	possible,	the	exact	areas	of	difficulty
for	their	students	and	help	them	find	the	best	solutions.
With	experience,	these	teachers	build	up	a	catalog	of
errors,	because	all	students	repeatedly	fall	into	the
same	old	traps.	These	teachers	find	the	right	words	to
console,	reassure,	and	restore	the	self-confidence	of
their	students,	all	the	while	allowing	them	to	amend



their	erroneous	mental	representations.	They	are	here
to	tell	the	truth,	not	to	judge.
Of	course,	the	most	rational	of	you	may	say,	“Isn’t	it

strictly	equivalent?	Isn’t	telling	students	what	they
should	have	done	the	same	thing	as	telling	them	that
they	were	wrong?”	Well,	not	quite.	From	a	purely
logical	point	of	view,	sure:	if	a	question	has	only	two
possible	answers,	A	or	B,	and	the	student	wrongly
chooses	A,	telling	him	that	the	correct	answer	is	B	is
exactly	the	same	as	telling	him,	“You’re	wrong.”	And,
by	the	same	reasoning,	in	a	binary	fifty-fifty	choice,
strictly	equivalent	amounts	of	learning	should	occur
upon	hearing	“You’re	right”	and	“You’re	wrong.”	Let’s
not	forget,	however,	that	children	are	not	perfect
logicians.	For	them,	the	additional	step	of	deducing	“If
I	chose	A	and	I	was	wrong,	then	the	correct	answer
must	have	been	B”	is	not	so	immediate.	On	the	other
hand,	they	have	no	trouble	grasping	the	main	message:
I	messed	up.	Actually,	when	this	very	experiment	was
performed,	adults	succeeded	in	extracting	equal
amounts	of	information	from	reward	and	punishment,
but	adolescents	did	not:	they	learned	much	better	from
their	successes	than	from	their	failures.15 	So,	let	us
spare	them	this	distress	and	give	them	the	most	neutral
and	informative	feedback	possible.	Error	feedback
should	not	be	confused	with	punishment.



GRADES,	A	POOR	SUBSTITUTE	FOR	ERROR	FEEDBACK

I	must	now	say	a	few	words	about	an	educational
institution	that	is	full	of	defects,	and	yet	so	deeply
rooted	in	tradition	that	we	have	a	hard	time	imagining
school	without	it:	grades.	According	to	learning	theory,
a	grade	is	just	a	reward	(or	punishment!)	signal.
However,	one	of	its	obvious	shortcomings	is	that	it	is
totally	lacking	in	precision.	The	grade	of	an	exam	is
usually	just	a	simple	sum—and	as	such,	it	summarizes
different	sources	of	errors	without	distinguishing	them.
It	is	therefore	insufficiently	informative:	by	itself,	it	says
nothing	about	the	reason	why	we	made	a	mistake,	or
how	to	correct	ourselves.	In	the	most	extreme	case,	an
F	that	stays	an	F	provides	zero	information,	only	the
clear	social	stigma	of	incompetence.
Grades	alone,	when	not	accompanied	by	detailed

and	constructive	assessments,	are	therefore	a	poor
source	of	error	feedback.	Not	only	are	they	imprecise,
but	they	are	also	often	delayed	by	several	weeks,	at
which	point	most	students	have	long	forgotten	which
aspects	of	their	inner	reasoning	misled	them.
Grades	can	also	be	profoundly	unfair,	especially	for

students	who	are	unable	to	keep	up,	because	the	level
of	the	exams	usually	increases	from	week	to	week.	Let’s
take	the	analogy	of	video	games.	When	you	discover	a
new	game,	you	initially	have	no	idea	how	to	progress
effectively.	Above	all,	you	don’t	want	to	be	constantly



reminded	of	how	bad	you	are!	That’s	why	video	game
designers	start	with	extremely	easy	levels,	where	you
are	almost	sure	to	win.	Very	gradually,	the	difficulty
increases	and,	with	it,	the	risk	of	failure	and	frustration—
but	programmers	know	how	to	mitigate	this	by	mixing
the	easy	with	the	difficult,	and	by	leaving	you	free	to
retry	the	same	level	as	many	times	as	you	need.	You
see	your	score	steadily	increase	…	and	finally,	the
joyous	day	comes	when	you	successfully	pass	the	final
level,	where	you	were	stuck	for	so	long.	Now	compare
this	with	the	report	cards	of	“bad”	students:	they	start
the	year	off	with	a	bad	grade,	and	instead	of	motivating
them	by	letting	them	take	the	same	test	again	until	they
pass,	the	teacher	gives	them	a	new	exercise	every
week,	almost	always	beyond	their	abilities.	Week	after
week,	their	“score”	hovers	around	zero.	In	the	video
game	market,	such	a	design	would	be	a	complete
disaster.
All	too	often,	schools	use	grades	as	punishments.	We

cannot	ignore	the	tremendous	negative	effects	that	bad
grades	have	on	the	emotional	systems	of	the	brain:
discouragement,	stigmatization,	feelings	of
helplessness	….	Let	us	listen	to	the	insightful	voice	of	a
professional	dunce:	Daniel	Pennac,	today	a	leading
French	writer	who	received	the	famous	Renaudot	Prize
in	2007	for	his	book	School	Blues,	but	who	was	at	the
bottom	of	his	class	year	after	year:



My	school	report	cards	confirmed	this	to	me
every	month:	if	I	was	an	idiot,	it	was	only	of	my
own	making.	Hence	the	self-hatred,	the
inferiority	complex	and,	above	all,	the	guilt	….	I
considered	myself	less	than	nothing.	Because	a
good-for-nothing	student,	as	my	teachers
repeatedly	told	me,	is	nothing	….	I	did	not	see
any	future	for	myself,	and	I	had	no	possible
representation	of	myself	as	an	adult.	Not
because	I	didn’t	want	anything,	but	because	I
thought	that	I	was	unfit	for	anything.16

Pennac	eventually	overcame	this	harmful	state	of
mind	(after	flirting	with	suicide),	but	few	children	exhibit
such	resilience.	The	effects	of	school-induced	stress
have	been	particularly	studied	in	the	field	of
mathematics,	the	school	subject	most	famous	for	the
all-too-well-known	anxiety	it	induces	in	so	many
students.	In	math	class,	some	children	suffer	from	a
genuine	form	of	math-induced	depression	because	they
know	that,	whatever	they	do,	they	will	be	punished	with
failure.	Mathematics	anxiety	is	a	well-recognized,
measured,	and	quantified	syndrome.	Children	who
suffer	from	it	show	activation	in	the	pain	and	fear
circuits,	including	the	amygdala,	which	is	located	deep
in	the	brain	and	is	involved	in	negative	emotions.17

These	students	are	not	necessarily	less	intelligent	than



others,	but	the	emotional	tsunami	that	they	experience
destroys	their	abilities	for	calculation,	short-term
memory,	and	especially	learning.
Numerous	studies,	both	in	humans	and	animals,

confirm	that	stress	and	anxiety	can	dramatically	hinder
the	ability	to	learn.18 	In	the	hippocampus	of	mice,	for
instance,	fear	conditioning	literally	solidifies	neuronal
plasticity:	after	the	animal	has	been	traumatized	by
random,	unpredictable	electrical	shocks,	the	circuit
finds	itself	in	a	similar	state	as	toward	the	end	of	the
sensitive	period,	when	synapses	have	become
immobile	and	frozen,	entangled	in	rigid	perineuronal
nets.	Conversely,	being	immersed	in	a	fear-free,
stimulating	environment	can	reopen	synaptic	plasticity,
thus	freeing	the	neurons	and	returning	their	synaptic
contacts	to	their	childlike	motility—a	fountain	of	youth.
Giving	out	bad	grades	and	presenting	them	as

punishments,	therefore,	severely	risks	inhibiting
children’s	progress,	because	stress	and	discouragement
will	prevent	them	from	learning.	In	the	long	run,	it	can
also	alter	their	personality	and	self-image.	The
American	psychologist	Carol	Dweck	has	largely	studied
the	negative	effects	of	this	mental	disposition,	which
consists	of	attributing	one’s	failures	(or	successes)	to	a
fixed,	immutable	aspect	of	one’s	personality—what	she
calls	a	“fixed	mindset.”	“I’m	bad	at	math,”	“Foreign
languages	are	not	my	forte,”	and	so	on	and	so	forth.



She	contrasts	this	view	with	the	fundamentally	correct
idea	that	all	children	are	capable	of	progress—what	she
calls	a	“growth	mindset.”
Her	research	suggests	that,	all	other	factors	being

equal,	mindset	plays	an	important	role	in	learning.19

Having	a	deeply	entrenched	view	that	anyone	can
progress	is,	in	itself,	a	source	of	progress.	Conversely,
children	who	adhere	to	the	idea	that	skills	are
immutable,	and	that	one	is	either	gifted	or	not,	perform
worse.	Indeed,	such	a	fixed	mindset	is	demotivating:	it
encourages	neither	attention	nor	active	engagement,
and	it	interprets	errors	as	markers	of	intrinsic	inferiority.
As	we	have	seen,	however,	making	errors	is	the	most
natural	thing—it	simply	proves	that	we	have	tried.
Remember	Theodore	Roosevelt:	“The	only	man	who
never	makes	a	mistake	is	the	man	who	never	does
anything.”	Imagine	if	Grothendieck	had	come	to	the
conclusion,	at	eleven	years	old,	that	he	was	bad	at	math
because	he	thought	that	pi	equalled	three.
Research	shows	that	even	successful	students	can

suffer	from	the	fixed-mindset	attitude.	They	too	need	to
work	in	order	to	maintain	their	motivation,	and	we	are
not	doing	them	any	favors	by	letting	them	believe	that
because	they	are	“gifted,”	they	do	not	have	to	work
hard.
Implementing	a	growth	mindset	does	not	mean

telling	every	child	that	he	or	she	is	the	best,	under	the



simple	pretext	of	nurturing	their	self-esteem.	Rather,	it
means	drawing	attention	to	their	day-to-day	progress,
encouraging	their	participation,	rewarding	their	efforts
…	and,	indeed,	explaining	to	them	the	very	foundations
of	learning:	that	all	children	have	to	make	efforts,	that
they	must	always	try	out	a	response,	and	that	erring
(and	correcting	their	errors)	is	the	only	way	to	learn.
Let’s	leave	the	last	word	to	Daniel	Pennac:	“Teachers

are	not	there	to	scare	their	students,	but	to	help	them
overcome	the	fear	of	learning.	Once	this	fear	has	been
overcome,	students’	hunger	for	knowledge	is
insatiable.”

TEST	THYSELF

If	grades	are	hardly	effective,	then	what	is	the	best	way
to	incorporate	our	scientific	knowledge	of	error
processing	into	our	classrooms?	The	rules	are	simple.
First,	students	must	be	encouraged	to	participate,	to
put	forth	responses,	to	actively	generate	hypotheses,
however	tentative;	and	second,	they	must	quickly
receive	objective,	non-punitive	feedback	that	allows
them	to	correct	themselves.
There	is	a	strategy	that	meets	all	these	criteria,	and	all

teachers	know	about	it:	it	is	called	…	testing!	What	is
less	well-known	is	that	dozens	of	scientific	publications
demonstrate	its	effectiveness.	Regularly	testing
students’	knowledge,	a	method	referred	to	as	“retrieval



practice,”	is	one	of	the	most	effective	educational
strategies.20 	Regular	testing	maximizes	long-term
learning.	The	mere	act	of	putting	your	memory	to	the
test	makes	it	stronger.	It	is	a	direct	reflection	of	the
principles	of	active	engagement	and	error	feedback.
Taking	a	test	forces	you	to	face	reality	head-on,	to
strengthen	what	you	know,	and	to	realize	what	you
don’t	know.
The	idea	that	testing	is	a	cornerstone	of	the	learning

process	is	not	self-evident.	Most	teachers	and	students
see	tests	as	a	simple	means	of	grading—their	role	is
merely	to	assess	the	knowledge	which	has	been
acquired	elsewhere,	during	class	or	while	studying.
Such	ranking	or	grading,	however,	turns	out	to	be	the
least	interesting	part	of	the	test.	What	matters	isn’t	the
final	grade	that	you	get,	but	the	effort	that	you	make	to
retrieve	information	and	the	immediate	feedback	that
you	receive.	In	this	respect,	research	shows	that	tests
often	play	at	least	as	important	a	role	as	the	class	itself.
This	conclusion	was	attained	in	a	famous	series	of

experiments	by	the	American	psychologist	Henry
Roediger	and	his	collaborators.	In	one	study,	they
asked	students	to	memorize	words	in	a	fixed	amount	of
time,	but	with	several	different	strategies.	One	group
was	told	to	spend	all	their	time	studying,	in	eight	short
sessions.	A	second	group	received	six	sessions	of
studying,	interrupted	by	two	tests.	Finally,	the	third



group	alternated	four	brief	study	sessions	and	four
tests.	Because	all	three	groups	had	the	same	amount	of
time,	testing	actually	reduced	the	time	available	for
studying.	Yet	the	results	were	clear:	forty-eight	hours
later,	the	students’	memory	of	the	word	list	was	better
the	more	opportunities	they	had	to	test	themselves.
Regularly	alternating	periods	of	studying	and	testing
forced	them	to	engage	and	receive	explicit	feedback	(“I
know	this	word	now,	but	it’s	this	other	one	I	can	never
remember	…”).	Such	self-awareness,	or	“meta-
memory,”	is	useful	because	it	allows	the	learner	to
focus	harder	on	the	difficult	items	during	the
subsequent	study	sessions.21 	The	effect	is	clear:	the
more	you	test	yourself,	the	better	you	remember	what
you	have	to	learn.
Here	is	another	example:	Imagine	that	you	have	to

learn	some	words	in	a	foreign	language,	such	as
qamutiik,	the	Inuit	word	for	“sled.”	One	possibility	is	to
write	the	two	words	side	by	side	on	a	card,	in	order	to
associate	them	mentally.	Alternatively,	you	could	read
the	Inuit	word	first	and	then,	after	five	seconds,	the
translation.	Note	that	the	second	condition	reduces	the
amount	of	information	available:	during	the	first	five
seconds,	you	see	only	the	word	qamutiik,	without	being
reminded	what	it	means.	However,	it	is	this	strategy
that	works	best.22 	Why?	Because	it	forces	you	to	think
first,	to	try	to	remember	the	meaning	of	the	word



before	you	receive	feedback.	Once	again,	active
engagement	followed	by	error	feedback	maximizes
learning.
The	paradox	is	that	neither	students	nor	their

teachers	are	aware	of	these	effects.	If	you	ask	their
opinion,	everyone	thinks	that	testing	oneself	is	a
distraction,	and	that	studying	is	what	matters.	This	is
why	students	and	teachers	alike	predict	exactly	the
opposite	of	what	is	observed	experimentally:	according
to	them,	the	more	we	study,	the	better	we	do.	And	in
agreement	with	this	wrong	idea,	most	students
spontaneously	spend	their	time	reading	and	rereading
class	notes	and	textbooks,	highlighting	each	line	with	a
different	color	of	the	rainbow	…	all	strategies	that	are
much	less	effective	than	taking	a	brief	test.
Why	do	we	have	the	illusion	that	cramming	for	an

exam	is	the	best	learning	strategy?	Because	we	are
unable	to	differentiate	between	the	various
compartments	of	our	memory.	Immediately	after
reading	our	textbook	or	our	class	notes,	information	is
fully	present	in	our	mind.	It	sits	in	our	conscious	working
memory,	in	an	active	form.	We	feel	as	if	we	know	it,
because	it	is	present	in	our	short-term	storage	space	…
but	this	short-term	compartment	has	nothing	to	do	with
the	long-term	memory	that	we	will	need	in	order	to
retrieve	the	same	information	a	few	days	later.	After	a
few	seconds	or	minutes,	working	memory	already	starts



dissipating,	and	after	a	few	days,	the	effect	becomes
enormous:	unless	you	retest	your	knowledge,	memory
vanishes.	To	get	information	into	long-term	memory,	it
is	essential	to	study	the	material,	then	test	yourself,
rather	than	spend	all	your	time	studying.
It’s	easy	to	put	these	ideas	into	practice	on	your	own.

All	you	have	to	do	is	prepare	flash	cards:	on	one	side,
you	write	a	question,	and	on	the	other,	the	answer.	To
test	yourself,	draw	the	cards	one	after	the	other,	and	for
each	card,	try	to	remember	the	answer	(prediction)
before	checking	it	by	turning	to	the	other	side	(error
feedback).	If	you	get	the	wrong	answer,	put	the	card
back	toward	the	top	of	the	pile—this	will	force	you	to
revisit	the	same	information	soon.	If	you	get	the	right
answer,	put	the	card	at	the	bottom	of	the	pile:	there	is
no	immediate	need	to	study	it	again,	but	it	will
reappear	sooner	or	later,	at	a	time	when	forgetting	will
have	begun	to	take	effect.	There	are	now	many	phone
and	tablet	apps	that	allow	you	to	build	your	own
collection	of	flash	cards,	and	a	similar	algorithm
underlies	learning	software,	such	as	the	famous
Duolingo	for	foreign	languages.



Self-testing	is	one	of	the	best	learning
strategies,	because	it	forces	us	to	become
aware	of	our	mistakes.	When	learning
foreign	words,	it	is	better	to	start	off	by
trying	to	remember	the	word	before
receiving	error	feedback	than	to	merely
study	each	pair	(top).	Experiments	also
show	that	it	is	better	to	alternate	periods
of	studying	and	testing	than	to	spend	all



of	one’s	time	studying	(middle).	In	the
long	run,	memory	is	much	better	when
rehearsal	periods	are	spaced	out,
especially	if	the	time	intervals	are
gradually	increased	(bottom).

THE	GOLDEN	RULE:	SPACING	OUT	THE	LEARNING

Why	does	the	alternation	of	studying	and	testing	have
such	positive	effects?	Because	it	exploits	one	of	the
most	effective	strategies	that	educational	science	has
discovered:	the	spacing	out	of	training	sessions.	This	is
the	golden	rule:	it	is	always	better	to	spread	out	the
training	periods	rather	than	cram	them	into	a	single	run.
The	best	way	to	ensure	retention	in	the	long	term	is
with	a	series	of	study	periods,	interspersed	with	tests
and	spaced	at	increasingly	large	intervals.
Decades	of	psychological	research	show	that	if	you

have	a	fixed	amount	of	time	to	learn	something,
spacing	out	the	lessons	is	a	much	more	effective
strategy	than	grouping	them.23 	The	distribution	of
learning	over	several	days	has	a	tremendous	effect:
experiments	show	that	you	can	multiply	your	memory
by	a	factor	of	three	when	you	review	at	regular
intervals,	rather	than	trying	to	learn	everything	at	once.
The	rule	is	simple,	and	all	musicians	know	it:	fifteen
minutes	of	work	every	day	of	the	week	is	better	than
two	hours	on	a	single	day	per	week.



Why	is	the	spacing	strategy	so	efficient?	Brain
imaging24 	shows	that	cramming	the	problems	into	a
single	session	decreases	the	brain	activity	they	evoke,
perhaps	because	repeated	information	gradually	loses
its	novelty.	Repetition	also	seems	to	create	an	illusion	of
knowledge,	an	overconfidence	due	to	the	presence	of
information	in	working	memory:	it	seems	available,	we
have	it	in	mind,	so	we	do	not	see	the	point	of	working
any	harder.	On	the	other	hand,	spacing	out	the	learning
increases	brain	activity:	it	seems	to	create	an	effect	of
“desirable	difficulty”	by	prohibiting	simple	storage	in
working	memory,	and	thus	forcing	the	relevant	circuits
to	work	more.
What	is	the	most	effective	time	interval	between	two

repetitions	of	the	same	lesson?	A	strong	improvement
is	observed	when	the	interval	reaches	twenty-four	hours
—probably	because	sleep,	as	we	will	see	in	a	moment,
plays	a	central	role	in	consolidating	what	we	learn.	But
American	psychologist	Hal	Pashler	and	his	colleagues
have	shown	that	the	optimal	interval	depends	on	the
desired	duration	of	memory	retention.	If	you	need	to
remember	the	information	for	only	a	few	days	or	weeks,
then	it	is	ideal	to	review	it	every	day	for	about	a	week.
If,	on	the	other	hand,	knowledge	must	be	maintained
for	several	months	or	years,	the	revision	interval	should
be	extended	proportionately.	The	rule	of	thumb	is	to
review	the	information	at	intervals	of	approximately	20



percent	of	the	desired	memory	duration—for	instance,
rehearse	after	two	months	if	you	want	a	memory	to	last
about	ten	months.	The	effect	is	substantial:	a	single
repetition	of	a	lesson	at	a	delay	of	a	few	weeks	triples
the	number	of	items	that	can	be	recalled	a	few	months
later!	To	keep	the	information	in	memory	as	long	as
possible,	it	is	best	to	gradually	increase	the	time
intervals	themselves:	start	with	rehearsals	every	day,
then	review	the	information	after	a	week,	a	month,	then
a	year	….	This	strategy	guarantees	optimal	memory	at
all	points	in	time.25

The	figure	above	shows	you	why:	each	review
reinforces	learning.	It	refreshes	the	strength	of	mental
representations	and	helps	fight	the	exponential
forgetfulness	that	characterizes	our	memory.	Above	all,
the	spacing	out	of	learning	sessions	seems	to	select,
out	of	all	the	available	memory	circuits	in	our	brain,	the
one	with	the	slowest	forgetting	curve,	that	is,	the	one
that	projects	the	information	farthest	into	the	future.
Indeed,	we	have	been	wrong	about	memory:	it	is	not

a	system	which	is	oriented	toward	the	past,	but	one
whose	role	is	to	send	data	to	the	future,	so	that	we	may
later	access	it.	By	repeating	the	same	information
several	times,	at	long	intervals,	we	help	our	brain
convince	itself	that	this	information	is	valuable	enough
to	be	delivered	to	our	future	self.



Hal	Pashler	draws	several	practical	lessons	from	this
research.	First,	learning	always	benefits	from	being
spread	over	several	sessions.	Second,	for	school	topics,
reviewing	after	a	few	days	or	weeks	is	not	enough.	If
you	want	to	memorize	something	in	the	long	run,	you
should	review	it	after	an	interval	of	at	least	a	few
months.	From	this	perspective,	we	have	to	rethink	the
entire	organization	of	textbooks.	Most	of	them	are
organized	into	chapters	that	focus	on	a	specific	topic
(which	is	good)	and	are	followed	by	questions	and
problems	that	focus	only	on	that	lesson	(which	is	less
good).	This	organization	has	two	negative
consequences:	the	lessons	are	not	reviewed	regularly	or
with	sufficient	spacing,	and	the	exercises	are	dumbed-
down,	because	students	do	not	have	to	determine	for
themselves	what	knowledge	or	strategies	should	be
used	to	address	a	given	problem.	Experiments	show
that	it	is	better	to	mix	all	sorts	of	different	problems,
instead	of	limiting	oneself	to	the	most	recent	lesson,	in
order	to	regularly	put	all	of	one’s	knowledge	to	the
test.26

What	about	finals	or	end-of-year	exams?	The	science
of	learning	suggests	that	they	are	not	ideal,	because
they	encourage	last-minute	work	rather	than	regular
practice.	Nevertheless,	they	are	still	a	useful	test	of
acquired	knowledge.	Last-minute	studying	is	not
necessarily	ineffective:	provided	the	student	has	already



made	efforts	to	learn	in	the	preceding	months,	intense
study	just	before	an	exam	refreshes	the	knowledge	in
memory	and	will	help	it	last.	However,	a	regular	review
of	knowledge,	year	after	year,	is	likely	to	yield	even
greater	benefit.	Short-term	exams,	which	focus	only	on
what	was	learned	in	the	preceding	weeks,	do	not
guarantee	long-term	memory.	A	cumulative	review,
covering	the	entire	program	from	the	beginning	of	the
year,	works	much	better.
What	is	the	point—you	may	be	asking—of	students

studying	the	same	things	over	the	course	of	the	school
year?	Why	make	them	repeat	an	exercise	that	they	have
already	completed	several	times?	If	they	get	perfect
scores,	will	they	learn	anything	at	all?	Of	course	they
will.	This	may	seem	paradoxical	in	a	chapter	devoted	to
the	benefits	of	error,	but	the	benefit	of	feedback	is	not
limited	to	items	that	students	get	wrong.	On	the
contrary,	receiving	feedback	improves	memory	even
when	the	right	answer	was	chosen.27 	Why?	Because	as
long	as	knowledge	is	not	perfectly	consolidated,	the
brain	continues	to	learn,	even	weakly.	As	long	as	there
is	uncertainty,	error	signals	continue	to	spread	in	our
brain.	The	difference	between	the	initial	low-confidence
answer	and	the	subsequent	100-percent-certain
information	acts	as	a	useful	feedback	signal:	it	flags	a
virtual	error	that	we	could	have	made	and	from	which
we	can	therefore	learn.



This	is	why	overlearning	is	always	beneficial:	until	our
knowledge	is	absolutely	certain,	reviewing	and	testing	it
continues	to	improve	our	performance,	especially	in	the
long	run.	Moreover,	repetition	has	other	benefits	for
our	brain:	it	automates	our	mental	operations	until	they
become	unconscious.	This	is	the	last	pillar	of	learning
that	remains	to	be	examined:	consolidation.







CHAPTER	10

Consolidation

CONSIDER	A	FIRST	GRADER	WHO	SUCCESFULLY	DEPLOYED	THE
THREE	pillars	of	learning	and	quickly	learned	to	read.	He
actively	engaged	in	reading,	with	curiosity	and
enthusiasm.	He	learned	to	pay	attention	to	every	letter
of	every	word,	from	left	to	right.	And,	over	the	months,
as	his	errors	receded,	he	began	to	accurately	decipher
the	correspondence	between	letters	and	sounds	and	to
store	the	spellings	of	irregular	words.	However,	he	is
not	a	fluid	reader	yet,	and	reads	slowly	and	with	effort.
What’s	missing?	He	still	has	to	deploy	the	fourth	pillar
of	learning:	consolidation.	His	reading,	which,	at	this
stage,	mobilizes	all	his	attention,	has	to	become
automatic	and	unconscious.
The	analysis	of	his	reading	times	is	revealing:	the

longer	a	word	is,	the	longer	it	takes	him	to	decipher	it
(see	figure	18	in	the	color	insert).	The	function	is	linear:
response	time	increases	by	a	fixed	amount	of	about
one-fifth	of	a	second	for	each	additional	letter.	This	is
characteristic	of	a	serial,	step-by-step	operation—and	it
is	completely	normal:	at	his	age,	reading	relies	on
deciphering	letters	or	letter	groups	one	by	one,	in	a
slow	and	attention-demanding	manner.1 	But	this



dysfluent	phase	should	not	last	forever:	with	practice,	in
the	two	years	that	follow,	the	child’s	reading	will
accelerate	and	become	more	fluid.	After	two	or	three
years	of	intensive	practice,	the	effect	of	word	length	will
flat	out	disappear.	Dear	reader,	at	this	very	moment,	as
your	expert	brain	deciphers	my	words,	you	take	the
same	exact	amount	of	time	to	read	any	word	between
three	and	eight	letters	long.	It	takes,	on	average,	about
three	years	of	training	for	visual	word	recognition	to
move	from	sequential	to	parallel.	Ultimately,	our	visual
word	form	area	processes	all	the	letters	of	a	word
simultaneously	rather	than	serially.
This	is	an	excellent	example	of	the	consolidation

which	happens	in	all	domains:	a	shift	from	slow,
conscious,	and	effortful	processing	to	fast,	unconscious,
and	automatic	expertise.	Our	brains	never	stop
learning.	Even	when	a	skill	is	mastered,	we	continue	to
overlearn	it.	Automatization	mechanisms	“compile”	the
operations	we	regularly	use	into	more	efficient	routines.
They	transferred	them	to	other	brain	circuits,	outside
our	conscious	awareness,	where	processes	can	unfold
independent	of	one	another	without	disrupting	other
operations	in	progress.

FREEING	UP	BRAIN	RESOURCES

When	you	scan	the	brain	of	a	beginner	reader,	what	do
you	see?	In	addition	to	activation	of	the	normal	reading



circuit—which	includes	visual	areas	for	letter
recognition	and	temporal-lobe	areas	for	phoneme,
syllable,	and	word	processing—a	massive	activation	of
parietal	and	prefrontal	regions	is	also	present.2 	This
intense	and	energy-hungry	activity,	reflecting	effort,
attention,	and	conscious	executive	control,	will
gradually	disappear	as	learning	consolidates	(see	figure
18	in	the	color	insert).	In	an	expert	reader,	these
regions	no	longer	contribute	to	reading—they	are
activated	only	if	you	disturb	reading,	for	example	by

spacing	out	the	l e t t e r s ,	or	by	 	them,	forcing

the	expert	brain	to	revert	to	the	slow,	beginner	mode.3

Automating	reading	means	setting	up	a	restricted
and	specialized	circuit	for	the	efficient	processing	of	the
strings	of	letters	that	we	regularly	encounter.	As	we
learn,	we	develop	an	extraordinarily	effective	circuit	for
recognizing	the	most	common	characters	as	well	as
their	combinations.4 	Our	brain	compiles	statistics:	it
determines	which	letters	are	most	frequent,	where	they
appear	most	often,	and	in	which	associations	they
occur.	Even	the	primary	visual	cortex	adapts	to	the
shapes	and	positions	of	the	most	frequent	letters.5

After	a	few	years	of	overlearning,	this	circuit	goes	into
routine	mode	and	manages	to	function	without	the
slightest	conscious	intervention.6 	At	this	stage,	the



activation	of	the	parietal	and	prefrontal	cortex	has
vanished:	we	can	now	read	effortlessly.
What	is	true	for	reading	also	applies	to	all	other	areas

of	learning.	Whether	we	learn	to	type,	play	a	musical
instrument,	or	drive	a	car,	our	gestures	are	initially
under	the	control	of	the	prefrontal	cortex:	we	produce
them	slowly	and	consciously,	one	by	one.	Practice,
however,	makes	perfect:	over	time,	all	effort
evaporates,	and	we	can	exercise	those	skills	while
talking	or	thinking	about	something	else.	Repeated
practice	turns	control	over	to	the	motor	cortex	and
especially	the	basal	ganglia,	a	set	of	subcortical	circuits
that	record	our	automatic	and	routine	behaviors
(including	prayers	and	swearing!).	The	same	shift
happens	for	arithmetic.	For	a	beginner	child,	each
calculation	problem	is	an	Everest	that	requires	great
effort	to	climb	and	mobilizes	the	circuits	of	the
prefrontal	cortex.	At	this	stage,	calculation	is	sequential:
to	solve	6	+	3,	children	will	typically	count	the	steps	one
by	one:	“Six	…	seven,	eight	…	nine!”	As	consolidation
progresses,	children	begin	to	retrieve	the	result	straight
from	memory,	and	the	prefrontal	activity	fades	away	in
favor	of	specialized	circuits	in	the	parietal	and	ventral
temporal	cortex.7

Why	is	automatization	so	important?	Because	it	frees
up	the	cortex’s	resources.	Remember	that	the	parietal
and	prefrontal	executive	cortices	operate	as	a	generic



executive	control	network	that	imposes	a	cognitive
bottleneck:	it	cannot	multitask.	While	our	brain’s	central
executive	is	focused	on	one	task,	all	other	conscious
decisions	are	delayed	or	canceled.	Thus,	as	long	as	a
mental	operation	remains	effortful,	because	it	has	not
yet	been	automated	by	overlearning,	it	absorbs
valuable	executive	attention	resources	and	prevents	us
from	focusing	on	anything	else.	Consolidation	is
essential	because	it	makes	our	precious	brain	resources
available	for	other	purposes.
Let	us	take	a	concrete	example.	Imagine	if	you	had	to

solve	a	math	problem,	but	your	reading	had	remained
at	the	beginner’s	level:	“A	dryver	leevz	Bawstin	att	too
oh	clok	and	heds	four	Noo	Yiorque	too	hunjred	myels
ahwey.	Hee	ar	eye-vz	at	ate	oh	clok.	Wat	waz	hiz	avrij
speed?”	I	think	you	get	my	point:	it	is	practically
impossible	to	do	both	things	at	the	same	time.	The
difficulty	of	reading	destroys	any	capacity	for	arithmetic
reflection.	To	progress,	it	is	essential	that	the	mental
tools	most	useful	to	us,	such	as	reading	or	arithmetic,
become	second	nature—that	they	operate
unconsciously	and	effortlessly.	We	cannot	reach	the
highest	levels	of	the	educational	pyramid	without	first
consolidating	its	foundations.

THE	KEY	ROLE	OF	SLEEP



We	have	already	seen	that	learning	is	much	more
efficient	when	done	at	regular	intervals:	rather	than
cramming	an	entire	lesson	into	one	day,	we	are	better
off	spreading	out	the	learning.	The	reason	is	simple:
every	night,	our	brain	consolidates	what	it	has	learned
during	the	day.	This	is	one	of	the	most	important
neuroscience	discoveries	of	the	last	thirty	years:	sleep	is
not	just	a	period	of	inactivity	or	a	garbage	collection	of
the	waste	products	that	the	brain	accumulated	while	we
were	awake.	Quite	the	contrary:	while	we	sleep,	our
brain	remains	active;	it	runs	a	specific	algorithm	that
replays	the	important	events	it	recorded	during	the
previous	day	and	gradually	transfers	them	into	a	more
efficient	compartment	of	our	memory.
The	discovery	dates	back	to	1924.	That	year,	two

American	psychologists,	John	Jenkins	(1901–48)	and
Karl	Dallenbach	(1887–1971),	revisited	the	classical
studies	on	memory.8 	They	re-examined	the	work	of	the
pioneer	of	memory,	German	Hermann	Ebbinghaus
(1850–1909),	who,	as	early	as	the	end	of	the	nineteenth
century,	had	discovered	a	basic	psychological	law:	the
more	time	goes	by,	the	less	you	remember	what	you
learned.	The	Ebbinghaus	forgetting	curve	is	a	beautiful,
monotonously	decreasing	exponential.	What	Jenkins
and	Dallenbach	noticed,	however,	is	that	the	curve
presented	a	single	anomaly:	it	showed	no	memory	loss
between	eight	and	fourteen	hours	after	learning



something	new.	Jenkins	and	Dallenbach	had	an
epiphany:	in	the	Ebbinghaus	experiment,	the	eight-
hour	time	limit	corresponded	to	tests	taken	on	the
same	day,	and	the	fourteen-hour	time	limit	to	tests
spaced	one	night	apart.	To	get	to	the	bottom	of	this,
they	designed	a	new	experiment	that	disentangled
these	two	variables:	the	time	elapsed	before	memory
was	tested,	and	whether	or	not	the	participants	had	the
opportunity	to	sleep.	To	do	so,	they	taught	their
students	random	syllables	either	around	midnight,	just
before	going	to	sleep,	or	in	the	morning.	The	result	was
clear:	what	we	learn	in	the	morning	fades	away	with
time,	according	to	Ebbinghaus’s	exponential	law;	what
is	learned	at	midnight,	on	the	other	hand,	remains
stable	over	time	(provided	the	students	had	at	least	two
hours	of	sleep).	In	other	words,	sleeping	prevents
forgetting.
Several	alternative	interpretations	of	these	results

come	to	mind.	Perhaps	memory	decays	during	the	day
because,	while	awake,	the	brain	accumulates	toxic
substances	that	are	eliminated	during	sleep;	or	perhaps
memory	suffers	from	interference	with	other	events	that
occur	in	the	interval	between	learning	and	testing,
which	does	not	happen	during	sleep.	But	these
alternatives	were	definitively	rejected	in	1994,	when
Israeli	researchers	demonstrated	that	sleep	causes
additional	learning:	without	any	extra	training,	cognitive



and	motor	performance	improved	after	a	period	of
sleep.9 	The	experiment	was	simple.	During	the	day,
volunteers	learned	to	detect	a	bar	at	a	specific	point	on
the	retina.	Their	performance	improved	slowly,	and	it
plateaued	after	a	few	hours	of	training:	the	limit
seemed	to	have	been	reached.	Send	the	participants	to
sleep,	however,	and	surprise:	when	they	wake	up	the
next	morning,	their	performance	is	much	improved,	and
remains	so	throughout	the	following	days.	Sleep
demonstrably	causes	the	extra	learning,	because	if	we
wake	subjects	up	during	the	night	each	time	they	enter
REM	sleep,	they	show	no	improvement	in	the	morning.
Numerous	studies	have	confirmed	and	extended

these	early	discoveries.10 	The	amount	of	nightly	gain
varies	according	to	the	quality	of	sleep,	which	can	be
assessed	by	placing	electrodes	on	the	scalp	and
monitoring	the	slow	waves	that	characterize	deep
sleep.	Both	the	duration	and	the	depth	of	sleep	predict
a	person’s	performance	improvement	upon	waking.	The
relationship	also	operates	in	the	converse	direction:	the
need	for	sleep	seems	to	depend	on	the	amount	of
stimulation	and	learning	that	occurred	during	the
previous	day.	In	animals,	a	gene	involved	in	cerebral
plasticity,	zif-268,	increases	its	expression	in	the
hippocampus	and	cortex	during	REM	sleep,	specifically
when	the	animals	were	previously	exposed	to	an



enriched	environment:	the	increased	stimulation	leads
to	a	surge	in	nocturnal	brain	plasticity.11

The	respective	roles	of	the	different	stages	of	sleep
are	not	yet	perfectly	established,	but	it	seems	that	deep
sleep	allows	for	the	consolidation	and	generalization	of
knowledge	(what	psychologists	call	semantic	or
declarative	memory),	while	REM	sleep,	during	which
brain	activity	is	close	to	a	state	of	wakefulness,
reinforces	perceptual	and	motor	learning	(procedural
memory).

THE	SLEEPING	BRAIN	RELIVES	THE	PREVIOUS	DAY

While	the	psychological	demonstrations	of	the	effects
of	sleep	were	quite	convincing,	the	neural	mechanism
by	which	a	sleeping	brain	could	learn,	even	better	than
while	awake,	remained	to	be	identified.	In	1994,
neurophysiologists	Matthew	Wilson	and	Bruce
McNaughton	made	a	remarkable	discovery:	in	the
absence	of	any	external	stimulation,	neurons	in	the
hippocampus	spontaneously	activate	during	sleep.12

And	this	activity	is	not	random:	it	retraces	the	footsteps
that	the	animal	took	during	the	day!
As	we	saw	in	Chapter	4,	the	hippocampus	contains

place	cells,	i.e.,	neurons	that	fire	when	an	animal	is	(or
believes	itself	to	be)	at	a	certain	point	in	space.	The
hippocampus	is	packed	with	a	variety	of	place-coding
neurons,	each	of	which	prefers	a	different	location.	If



you	record	enough	of	them,	you	find	that	they	span	the
entire	space	in	which	the	animal	walks.	When	a	rat
moves	through	a	corridor,	some	neurons	fire	at	the
entrance,	others	in	the	middle,	and	yet	others	toward
the	end.	Thus,	the	path	that	the	rat	takes	is	reflected	by
the	successive	firing	of	a	whole	series	of	place	cells:
movement	in	actual	space	becomes	a	temporal
sequence	in	neural	space.
And	this	is	where	Wilson	and	McNaughton’s

experiments	fit	in.	They	discovered	that	when	the	rat
falls	asleep,	the	place	cells	in	its	hippocampus	start
firing	again,	in	the	same	order.	The	neurons	literally
replay	the	trajectories	of	the	preceding	wake	period.
The	only	difference	is	speed:	during	sleep,	neuronal
discharges	can	be	accelerated	by	a	factor	of	twenty.	In
their	sleep,	rats	dream	of	a	high-speed	race	through
their	environment!
The	relationship	between	the	firing	of	hippocampal

neurons	and	the	position	of	the	animal	is	so	faithful	that
neuroscientists	have	managed	to	reverse	the	process,
decoding	the	content	of	a	dream	from	the	animal’s
neuronal	firing	patterns.13 	During	wakefulness,	as	the
animal	walks	around	in	the	real	world,	the	systematic
mapping	between	its	location	and	its	brain	activity	is
recorded.	These	data	make	it	possible	to	train	a
decoder,	a	computer	program	that	reverses	the
relationship	and	guesses	the	animal’s	position	from	the



pattern	of	neuronal	firing.	When	this	decoder	is	applied
to	sleep	data,	we	see	that	while	the	animal	dozes,	its
brain	traces	out	virtual	trajectories	in	space.
The	rat’s	brain	thus	replays,	at	a	high	speed,	the

patterns	of	activity	it	experienced	the	day	before.	Every
night	brings	back	memories	of	the	day.	And	such	replay
is	not	confined	to	the	hippocampus,	but	extends	to	the
cortex,	where	it	plays	a	decisive	role	in	synaptic
plasticity	and	the	consolidation	of	learning.	Thanks	to
this	nocturnal	reactivation,	even	a	single	event	of	our
lives,	recorded	only	once	in	our	episodic	memory,	can
be	replayed	hundreds	of	times	during	the	night	(see
figure	19	in	the	color	insert).	Such	memory	transfer	may
even	be	the	main	function	of	sleep.14 	It	is	possible	that
the	hippocampus	specializes	in	the	storage	of	the
events	of	the	preceding	day,	using	a	fast	single-trial
learning	rule.	During	the	night,	the	reactivation	of	these
neuronal	signals	spreads	them	to	other	neural	networks,
mainly	located	in	the	cortex	and	capable	of	extracting
as	much	information	as	possible	from	each	episode.
Indeed,	in	the	cortex	of	a	rat	that	learns	to	perform	a
new	task,	the	more	a	neuron	reactivates	during	the
night,	the	more	it	increases	its	participation	in	the	task
during	the	following	day.15 	Hippocampal	reactivation
leads	to	cortical	automation.
Does	the	same	phenomenon	exist	in	humans?	Yes.

Brain	imaging	shows	that	during	sleep,	the	neural



circuits	that	we	used	during	the	preceding	day	get
reactivated.16 	After	playing	hours	of	Tetris,	gamers
were	scanned	the	following	night:	they	literally
hallucinated	a	cascade	of	geometric	shapes	in	their
dreams,	and	their	eyes	made	corresponding
movements,	from	top	to	bottom.	What’s	more,	in	a
recent	study,	volunteers	fell	asleep	in	an	MRI	machine
and	were	suddenly	awakened	as	soon	as	their
electroencephalogram	suggested	that	they	were
dreaming.	The	MRI	showed	that	many	areas	of	their
brains	had	spontaneously	activated	just	before	they
were	woken,	and	that	the	recorded	activity	predicted
the	content	of	their	dreams.	If	a	participant	reported,
for	instance,	the	presence	of	people	in	their	dream,	the
experimenters	detected	sleep-induced	activity	in	the
cortical	area	associated	with	face	recognition.	Other
experiments	showed	that	the	extent	of	this	reactivation
predicts	not	only	the	content	of	the	dream,	but	also	the
amount	of	memory	consolidation	after	waking	up.
Some	neurosurgeons	are	even	beginning	to	record
single	neurons	in	the	human	brain,	and	they	see	that,	as
in	rats,	their	firing	patterns	trace	out	the	sequence	of
events	experienced	on	the	preceding	day.
Sleep	and	learning	are	strongly	linked.	Numerous

experiments	show	that	spontaneous	variations	in	the
depth	of	sleep	correlate	with	variations	in	performance
on	the	next	day.	When	we	learn	to	use	a	joystick,	for



example,	during	the	following	night,	the	frequency	and
intensity	of	slow	sleep	waves	increase	in	the	parietal
regions	of	the	brain	involved	in	such	sensorimotor
learning—and	the	stronger	the	increase,	the	more	a
person’s	performance	improves.17 	Similarly,	after
motor	learning,	brain	imaging	shows	a	surge	of	activity
in	the	motor	cortex,	hippocampus,	and	cerebellum,
accompanied	by	a	decrease	in	certain	frontal,	parietal,
and	temporal	areas.18 	Experiment	after	experiment
gives	convergent	results:	after	sleeping,	brain	activity
shifts	around,	and	a	portion	of	the	knowledge	acquired
during	the	day	is	strengthened	and	transferred	to	more
automatic	and	specialized	circuits.
Although	automation	and	sleep	are	tightly	related,

every	scientist	knows	that	correlation	is	not	causation.	Is
the	link	a	causal	one?	To	verify	this,	we	can	artificially
increase	the	depth	of	sleep	by	creating	a	resonance
effect	in	the	brain.	During	sleep,	brain	activity	oscillates
spontaneously	at	a	slow	frequency,	on	the	order	of	forty
to	fifty	cycles	per	minute.	By	giving	the	brain	a	small
additional	kick	at	just	the	right	frequency,	we	can	make
these	rhythms	resonate	and	increase	their	intensity—a
bit	like	when	we	push	a	swing	at	just	the	right	moments,
until	it	oscillates	with	a	huge	amplitude.	German	sleep
scientist	Jan	Born	did	precisely	this	in	two	different
ways:	by	passing	tiny	currents	through	the	skull,	and	by
simply	playing	a	sound	synchronized	with	the	brain



waves	of	the	sleeper.	Whether	electrified	or	soothed	by
the	sound	of	waves,	the	sleeping	person’s	brain	was
carried	away	by	this	irresistible	rhythm	and	produced
significantly	more	slow	waves	characteristic	of	deep
sleep.	In	both	cases,	on	the	following	day,	this
resonance	led	to	a	stronger	consolidation	of	learning.19

A	French	start-up	has	begun	exploiting	this	effect:	it
sells	headbands	which	supposedly	facilitate	sleep	and
increase	the	depth	of	sleep	by	playing	quiet	sounds
that	stimulate	the	slow	rhythms	of	the	nocturnal	brain.
Other	researchers	attempt	to	increase	learning	by
forcing	the	brain	to	reactivate	certain	memories	at
night.	Imagine	learning	certain	facts	in	a	classroom
heavily	scented	with	the	smell	of	roses.	Once	you	enter
deep	sleep,	we	spray	your	bedroom	with	the	same
fragrance.	Experiments	indicate	that	the	information
you	learned	is	much	better	consolidated	the	next
morning	than	if	you	had	slept	while	being	exposed	to
another	smell.20 	The	perfume	of	roses	serves	as	an
unconscious	cue	that	biases	your	brain	to	reactivate	this
particular	episode	of	the	day,	thus	increasing	its
consolidation	in	memory.
The	same	effect	can	be	achieved	with	auditory	cues.

Imagine	that	you	are	asked	to	memorize	the	locations
of	fifty	images,	each	associated	with	a	given	sound	(a
cat	meows,	a	cow	moos,	etc.).	Fifty	items	are	a	lot	to
remember	…	but	the	night	is	there	to	help.	In	one



experiment,	during	the	night,	the	researchers
stimulated	the	subjects’	brains	with	half	of	the	sounds.
Hearing	them	unconsciously	during	deep	sleep	biased
the	nocturnal	neuronal	replay—and	the	next	morning,
the	participants	remembered	the	locations	of	the
corresponding	images	much	better.21

In	the	future,	will	we	all	fiddle	with	our	sleep	in	order
to	learn	better?	Many	students	already	do	this
spontaneously:	they	review	an	important	lesson	just
before	falling	asleep,	unknowingly	attempting	to	bias
their	nocturnal	replay.	But	let’s	not	confuse	such	useful
strategies	with	the	misconception	that	one	can	acquire
entirely	new	skills	while	sleeping.	Some	charlatans	sell
audio	recordings	that	are	supposed	to	teach	you	a
foreign	language	unconsciously	while	you	sleep.	The
research	is	clear—such	tapes	have	no	effect
whatsoever.22 	Although	there	might	be	a	few
exceptions,	the	bulk	of	the	evidence	suggests	that	the
sleeping	brain	does	not	absorb	new	information:	it	can
only	replay	what	it	has	already	experienced.	To	learn	a
skill	as	complex	as	a	new	language,	the	only	thing	that
works	is	practice	during	the	day,	then	sleep	during	the
night	to	reactivate	and	consolidate	what	we	acquired.

DISCOVERIES	DURING	SLEEP

Does	sleeping	merely	strengthen	memory?	Many
scientists	think	otherwise:	they	report	making



discoveries	during	the	night.	The	most	famous	case	is
the	German	chemist	August	Kekule	von	Stradonitz
(1829–96),	who	first	dreamed	up	the	structure	of
benzene—an	unusual	molecule,	because	its	six	carbon
atoms	form	a	closed	loop,	like	a	ring	or	…	a	snake	that
bites	its	tail.	This	is	how	Kekule	described	his	dream	on
that	fateful	night:

Again	the	atoms	were	gamboling	before	my
eyes	….	My	mental	eye,	rendered	more	acute	by
repeated	visions	of	this	kind,	could	now
distinguish	larger	structures	of	manifold
conformation;	long	rows	sometimes	more	closely
fitted	together,	all	twining	and	twisting	in	snake-
like	motion.	But	look!	What	was	that?	One	of	the
snakes	had	seized	hold	of	its	own	tail,	and	the
form	whirled	mockingly	before	my	eyes.

And	Kekule	concluded:	“Let	us	learn	to	dream,
gentlemen,	and	then	perhaps	we	shall	learn	the	truth.”
Can	sleep	really	increase	our	creativity	and	lead	us	to

truth?	While	science	historians	are	divided	on	the
authenticity	of	Kekule’s	Ouroboros	episode,	the	idea	of
a	nightly	incubation	is	widespread	among	scientists	and
artists.	The	designer	Philippe	Starck	said	with	humor	in
a	recent	interview,	“Every	night	after	putting	my	book
down	…	I	say	to	my	wife:	‘I’m	off	to	work.’”23 	I	myself



have	often	had	the	experience	of	discovering	the
solution	to	a	difficult	problem	upon	waking	up.
However,	a	collection	of	anecdotes	does	not	make	for	a
proof.	You	have	to	experiment—and	that’s	exactly	what
Jan	Born	and	his	team	did.24 	During	the	day,	these
researchers	taught	volunteers	a	complex	algorithm,
which	required	applying	a	series	of	calculations	to	a
given	number.	However,	unbeknownst	to	the
participants,	the	problem	contained	a	hidden	shortcut,
a	trick	that	cut	the	calculation	time	by	a	large	amount.
Before	going	to	sleep,	very	few	subjects	had	figured	it
out.	However,	a	good	night’s	sleep	doubled	the
number	of	participants	who	discovered	the	shortcut,
while	those	who	were	prevented	from	sleeping	never
experienced	such	a	eureka	moment.	Moreover,	the
results	were	the	same	regardless	of	the	time	of	day	at
which	participants	were	tested.	Thus,	elapsed	time	was
not	the	determining	factor:	only	sleep	led	to	genuine
insight.
Nocturnal	consolidation	is	therefore	not	limited	to	the

strengthening	of	existing	knowledge.	The	discoveries
from	the	day	are	not	only	stored,	but	also	recoded	in	a
more	abstract	and	general	form.	Nighttime	neuronal
replay	undoubtedly	has	a	crucial	role	in	this	process.
Every	night,	our	floating	ideas	from	the	day	are
reactivated	hundreds	of	times	at	an	accelerated	rate,
thus	multiplying	the	chances	that	our	cortex	eventually



discovers	a	rule	that	makes	sense.	In	addition,	the
twentyfold	acceleration	of	neural	discharges
compresses	information.	High-speed	replay	implies	that
the	neurons	that	were	activated	at	long	intervals	while
awake	now	find	themselves	adjacent	in	the	night
sequence.	This	mechanism	seems	ideal	for	gathering,
synthesizing,	compressing,	and	“converting	raw
information	into	useful	and	exploitable	knowledge”—
the	very	definition	of	intelligence	according	to	artificial
intelligence	mogul	Demis	Hassabis.
In	the	future,	will	intelligent	machines	have	to	sleep

like	we	do?	The	question	seems	crazy,	yet	I	think	that,
in	a	certain	sense,	they	will:	their	learning	algorithms
will	probably	incorporate	a	consolidation	phase	similar
to	what	we	call	sleep.	Indeed,	computer	scientists	have
already	designed	several	learning	algorithms	that	mimic
the	sleep/wake	cycle.25 	These	algorithms	provide
inspiring	models	for	the	new	vision	of	learning	that	I
defend	in	this	book,	in	which	learning	consists	of
building	an	internal	generative	model	of	the	outside
world.	Remember	that	our	brain	contains	massive
internal	models,	capable	of	resynthesizing	a	variety	of
truer-than-life	mental	images,	realistic	dialogues,	and
meaningful	deductions.	In	the	awake	state,	we	adjust
these	models	to	our	environment:	we	use	the	sensory
data	that	we	receive	from	the	outside	world	to	select
whichever	model	best	fits	the	world	around	us.	During



this	stage,	learning	is	primarily	a	bottom-up	operation:
the	unexpected	incoming	sensory	signals,	when
confronted	with	the	predictions	of	our	internal	models,
generate	prediction-error	signals	that	climb	up	the
cortical	hierarchy	and	adjust	the	statistical	weights	at
each	step,	so	that	our	top-down	models	progressively
gain	in	accuracy.
The	new	idea	is	that	during	sleep,	our	brain	works	in

the	opposite	direction:	from	top	to	bottom.	During	the
night,	we	use	our	generative	models	to	synthesize	new,
unanticipated	images,	and	part	of	our	brain	trains	itself
on	this	array	of	images	created	from	scratch.	This
enhanced	training	set	allows	us	to	refine	our	ascending
connections.	Because	both	the	parameters	of	the
generative	model	and	its	sensory	consequences	are
known,	it	is	now	much	easier	to	discover	the	link
between	them.	This	is	how	we	become	more	and	more
effective	in	extracting	the	abstract	information	that	lies
behind	a	specific	sensory	input:	after	a	good	night’s
sleep,	the	slightest	clue	suffices	to	identify	the	best
mental	model	of	reality,	however	abstract	it	may	be.
According	to	this	idea,	dreams	are	nothing	more	than

an	enhanced	training	set	of	images:	our	brain	relies	on
internal	reconstructions	of	reality	to	multiply	its
necessarily	limited	experience	of	the	day.	Sleep	seems
to	solve	a	problem	that	all	learning	algorithms	face:	the
scarcity	of	the	data	available	for	training.	To	learn,



current	artificial	neural	networks	need	huge	data	sets—
but	life	is	too	short,	and	our	brain	has	to	make	do	with
the	limited	amount	of	information	it	can	gather	during
the	day.	Sleep	may	be	the	solution	that	the	brain	found
to	simulate,	in	an	accelerated	manner,	myriad	events
that	an	entire	life	would	not	suffice	to	experience	for
real.
During	these	thought	experiments,	we	occasionally

make	discoveries.	There	is	nothing	magical	about	this:
as	our	mental	simulation	engine	runs,	it	sometimes	hits
upon	unexpected	outcomes—a	bit	like	a	chess	player,
once	she	has	mastered	the	rules,	can	spend	years
exploring	their	consequences.	Indeed,	humanity	owes
to	mental	imagery	some	of	its	greatest	scientific
discoveries—when	Einstein	dreamed	of	riding	a
photon,	for	instance,	or	when	Newton	imagined	the
moon	falling	onto	the	earth	like	an	apple.	Even
Galileo’s	most	famous	experiment,	in	which	he	dropped
objects	from	the	Tower	of	Pisa	to	prove	that	their	free-
falling	speed	does	not	depend	on	their	mass,	probably
never	took	place.	A	thought	experiment	sufficed:
Galileo	imagined	dropping	two	spheres,	one	light	and
one	heavy,	from	the	top	of	the	tower;	supposed	that
the	heavier	one	would	fall	faster;	and	used	his	mental
models	to	show	that	this	led	to	a	contradiction.
Suppose,	he	said,	that	I	connect	the	two	spheres	with	a
wire	of	negligible	mass.	The	resulting	two-sphere



system,	now	forming	a	heavier	object,	should	fall	even
faster.	But	this	is	absurd	because	the	lighter	sphere,
which	falls	less	quickly,	should	slow	down	the	heavier
one.	These	never-ending	contradictions	lead	to	only
one	possibility:	all	objects	fall	at	the	same	speed
regardless	of	their	mass.
This	is	the	kind	of	reasoning	that	our	mental	simulator

affords,	day	or	night.	The	very	fact	that	we	can	conjure
such	complex	mental	scenes	highlights	the
extraordinary	array	of	algorithms	in	our	brain.	Of
course,	we	learn	during	the	day,	but	nocturnal	neuronal
replay	multiplies	our	potential.	This	may	indeed	be	one
of	the	secrets	of	the	human	species,	because
suggestive	data	indicate	that	our	sleep	may	be	the
deepest	and	most	effective	of	all	primates.26

SLEEP,	CHILDHOOD,	AND	SCHOOL

What	about	children?	Everyone	knows	that	infants
spend	most	of	their	time	sleeping,	and	that	sleep
shortens	with	age.	This	is	logical:	early	childhood	is	a
privileged	period	during	which	our	learning	algorithms
have	a	heavier	workload.	In	fact,	experimental	data
show	that,	for	the	same	length	of	time,	a	child’s	sleep	is
two	to	three	times	more	effective	than	that	of	an	adult.
After	intensive	learning,	ten-year-old	children	dive
much	faster	into	deep	sleep	than	adults.	Their	slow
waves	are	more	intense,	and	the	result	is	clear:	when



they	study	a	sequence,	sink	into	sleep,	and	wake	up	the
next	day	refreshed	and	rested,	they	discover	more
regularities	than	adults.27

Nocturnal	consolidation	is	already	at	work	during	the
first	few	months	of	life.	Infants	under	one	year	of	age
rely	on	it,	for	example,	when	they	learn	a	novel	word.
Babies	who	take	a	short	nap,	only	an	hour	and	a	half
long,	retain	much	better	the	words	that	they	learned
within	the	few	hours	before	falling	asleep.28 	Above	all,
they	generalize	them	better:	the	first	time	babies	hear
the	word	“horse,”	they	associate	it	only	with	one	or	two
specific	instances	of	horses,	but	after	having	slept,	their
brains	manage	to	associate	this	word	with	new
specimens	that	they	have	never	seen	before.	Like
Kekule	in	the	crib,	these	budding	scientists	make
discoveries	during	their	sleep	and	wake	up	with	a	much
better	theory	of	the	word	horse.
What	about	school-age	children?	Research	is	equally

clear:	in	preschool,	even	a	brief	afternoon	nap
strengthens	the	memory	of	what	the	children	learned	in
the	morning.29 	For	maximum	benefit,	sleep	should
occur	within	hours	of	learning.	This	benefit,	however,
exists	only	in	children	who	regularly	take	naps.	Since
the	brain	naturally	regulates	its	need	for	sleep
according	to	the	stimulation	of	the	day,	it	does	not
seem	useful	to	force	children	to	nap,	but	we	should
encourage	napping	for	those	who	feel	the	need.



Unfortunately,	with	TV,	smartphones,	and	internet
galore,	children’s	sleep,	like	that	of	adults,	is	now
threatened	on	all	fronts.	What	are	the	consequences?
Can	chronic	sleep	deprivation	go	so	far	as	to	cause
specific	learning	disabilities,	which	are	apparently	on
the	rise?	This	is	still	only	a	hypothesis,	but	there	are
some	suggestive	hints.30 	For	instance,	a	subset	of
hyperactive	children	with	attention	disorders	may
simply	be	suffering	from	a	chronic	lack	of	sleep.	Some
experience	sleep	apneas	that	prevent	them	from	falling
into	deep	sleep—and	simply	clearing	out	the	airways
suffices	to	eliminate	not	only	their	chronic	sleep	deficit,
but	also	their	attention	impairment.	Recent	experiments
even	suggest	that	electrical	stimulation	of	the	brain,	by
increasing	the	depth	of	slow	sleep	waves,	may	mitigate
the	learning	deficit	in	hyperactive	children.
Let	me	be	clear:	these	recent	data	still	need	to	be

replicated,	and	I	am	in	no	way	denying	the	existence	of
genuine	attention	disorders	(in	children	for	whom
attention	training,	or	sometimes	the	drug	Ritalin,	can
have	very	positive	effects).	From	an	educational
perspective,	however,	there	is	little	doubt	that
improving	the	length	and	quality	of	sleep	can	be	an
effective	intervention	for	all	children,	especially	those
with	learning	difficulties.
This	idea	has	been	tested	in	teenagers.	Around

puberty,	chronobiology	shows	that	the	sleep	cycle



shifts:	adolescents	do	not	feel	the	need	to	go	to	bed
early,	but,	as	everyone	may	have	experienced,	they
have	the	greatest	difficulty	getting	up.	It	is	not	that	they
are	unwilling	so	much	as	a	simple	consequence	of	the
massive	turmoil	in	the	neural	and	hormonal	networks
that	control	their	sleep/wake	cycle.	Unfortunately,	no
one	seems	to	have	informed	school	principals,	who
continue	to	require	students	to	be	present	early	in	the
morning.	What	would	be	so	bad	about	changing	this
arbitrary	convention?	The	experiment	has	been	done,
with	promising	results:	once	the	start	of	school	is
delayed	by	half	an	hour	to	an	hour,	teenagers	get	more
sleep,	school	attendance	increases,	attention	in	class
improves,	and	grades	shoot	up.31 	And	the	list	of
positive	effects	could	go	on:	the	American	Academy	of
Pediatrics	strongly	recommends	delaying	school	start
times	as	an	efficient	countermeasure	to	teenage
obesity,	depression,	and	accidents	(e.g.,	drowsy
driving).	That	children’s	general	physical	and	mental
well-being	can	be	so	easily	improved,	at	strictly	no	cost,
provides	a	magnificent	example	of	adapting	the
educational	system	to	the	constraints	of	brain	biology.



CONCLUSION

Reconciling	Education	with	Neuroscience

The	greatest	and	most	important	difficulty	of
human	science	is	the	nurture	and	education	of
children.

Montaigne,	Essays	(1580)

Pedagogy	is	like	medicine:	an	art,	but	one	which
is	based—or	should	be	based—on	precise
scientific	knowledge.

Jean	Piaget,	“La	pédagogie	moderne”
(1949)

AT	THE	END	OF	THIS	JOURNEY,	I	HOPE	TO	HAVE	CONVINCED
YOU	THAT,	thanks	to	recent	advances	in	cognitive
psychology,	neuroscience,	artificial	intelligence,	and
education	sciences,	we	now	possess	detailed
knowledge	about	how	our	brain	learns.	This	knowledge
is	not	self-evident,	and	most	of	our	preconceived	ideas
about	learning	need	to	be	rescinded:

No,	babies	are	not	blank	slates:	as	early	as	the
first	year	of	life,	they	possess	vast	knowledge	of



objects,	numbers,	probabilities,	space,	and
people.

No,	the	child’s	brain	is	not	a	sponge	that
obediently	absorbs	the	structure	of	its
environment.	Remember	Felipe,	the	blind	and
tetraplegic	Brazilian	storyteller,	or	Nicholas
Saunderson,	the	blind	mathematician	who	held
Newton’s	chair:	such	cases	show	us	that	sensory
inputs	can	be	disrupted	or	absent	without	ruining
a	child’s	grasp	of	abstract	ideas.

No,	the	brain	is	not	just	a	network	of	malleable
neurons	that	waits	to	be	shaped	by	its	inputs:	all
the	large	fiber	bundles	are	present	at	birth,	and
brain	plasticity,	however	indispensable,	typically
refines	only	the	last	millimeters	of	our
connections.

No,	learning	does	not	occur	passively	through
simple	exposure	to	data	or	lectures:	on	the
contrary,	cognitive	psychology	and	brain	imaging
show	us	that	children	are	budding	scientists,
constantly	generating	new	hypotheses,	and	that
the	brain	is	an	ever-alert	organ	that	learns	by
testing	the	models	it	projects	onto	the	outside
world.

No,	errors	are	not	the	mark	of	bad	students:
making	mistakes	is	an	integral	part	of	learning,



because	our	brain	can	adjust	its	models	only
when	it	discovers	a	discrepancy	between	what	it
envisioned	and	reality.

No,	sleep	is	not	just	a	period	of	rest:	it	is	an
integral	part	of	our	learning	algorithm,	a
privileged	period	during	which	our	brain	plays	its
models	in	a	loop	and	enhances	the	experience	of
the	day	by	a	factor	of	ten	to	one	hundred.

And	no,	today’s	learning	machines	are	nowhere
close	to	surpassing	the	human	brain:	our	brains
remain,	for	the	moment	at	least,	the	fastest,	most
effective,	and	most	energy	efficient	of	all
information	processing	devices.	A	true
probabilistic	machine,	it	successfully	extracts	the
maximum	amount	of	information	from	each
moment	of	the	day	and	transforms	it	at	night	into
abstract	and	general	knowledge,	in	a	way	that	we
do	not	yet	know	how	to	reproduce	in	computers.

In	the	Promethean	battle	between	the	computer	chip
and	the	neuron,	the	machine	and	the	brain,	the	latter
still	has	the	advantage.	For	sure,	in	principle,	there	is
nothing	in	the	mechanics	of	the	brain	that	a	machine
could	not	imitate.	Indeed,	all	the	ideas	I	have	exposed
here	are	already	in	the	hands	of	computer	scientists
whose	research	is	overtly	inspired	by	neuroscience.1 	In
practice,	however,	machines	still	have	a	long	way	to	go.



To	improve,	they	will	need	many	of	the	ingredients	that
we	reviewed	here:	an	internal	language	of	thought	that
allows	concepts	to	be	flexibly	recombined;	algorithms
that	reason	with	probability	distributions;	a	curiosity
function;	effective	systems	for	managing	attention	and
memory;	and	perhaps	a	sleep/wake	algorithm	that
expands	the	training	set	and	increases	the	chances	of
discovery.	Algorithms	of	this	type	are	beginning	to
appear,	but	they	remain	light	years	away	from	the
performance	of	a	newborn	baby.	The	brain	keeps	the
upper	hand	over	machines,	and	I	predict	that	it	will	for	a
long	time.

THIRTEEN	TAKE-HOME	MESSAGES	TO	OPTIMIZE
CHILDREN’S	POTENTIAL

The	more	I	study	the	human	brain,	the	more	I	am
impressed.	But	I	also	know	that	its	performance	is
fragile,	as	it	strongly	depends	on	the	environment	in
which	it	develops.	Too	many	children	do	not	reach	their
full	potential	because	their	families	or	schools	do	not
provide	them	with	ideal	conditions	for	learning.
International	comparisons	are	alarming:	they	show

that,	over	the	past	fifteen	or	twenty	years,	the	school
results	of	many	Western	countries,	including	my	home
country,	France,	have	plunged,	while	those	of	many
Asian	countries	and	cities—such	as	Singapore,
Shanghai,	and	Hong	Kong—have	soared.2 	In



mathematics,	which	used	to	be	France’s	greatest
strength,	scores	fell	so	sharply	between	2003	and	2015
that	my	country	now	occupies	the	last	place	in	Europe
in	the	TIMSS	survey,	which	evaluates	the	achievements
of	fifteen-year-old	students	in	math	and	science.
Faced	with	such	poor	results,	we	are	sometimes	too

quick	to	point	our	fingers	at	teachers.	In	reality,	nobody
knows	the	reasons	behind	this	recent	downfall:	Are	the
culprits	the	parents,	the	schools,	or	society	as	a	whole?
Should	we	blame	lack	of	sleep,	inattention,	or	video
games?	Whatever	the	reasons	may	be,	I	am	convinced
that	recent	advances	in	the	science	of	learning	may
help	reverse	this	dark	trend.	We	now	know	a	lot	more
about	the	conditions	that	maximize	learning	and
memory.	All	of	us,	parents	and	teachers	alike,	must
learn	to	implement	these	conditions	in	our	daily	lives,	at
home	and	in	the	classroom.
The	scientific	results	that	I	have	presented	converge

toward	simple,	easily	applicable	ideas.	Let’s	review
them	together:

Do	not	underestimate	children.	At	birth,	infants
possess	a	rich	set	of	core	skills	and	knowledge.
Object	concepts,	number	sense,	a	knack	for
languages,	knowledge	of	people	and	their
intentions	…	so	many	brain	modules	are	already
present	in	young	children,	and	these



foundational	skills	will	later	be	recycled	in
physics,	mathematics,	language,	and	philosophy
classes.	Let	us	take	advantage	of	children’s	early
intuitions:	each	word	and	symbol	that	they	learn,
however	abstract,	must	connect	to	prior
knowledge.	This	connection	is	what	will	give
them	meaning.

Take	advantage	of	the	brain’s	sensitive
periods.	In	the	first	years	of	life,	billions	of
synapses	are	created	and	destroyed	every	day.
This	effervescent	activity	makes	the	child’s	brain
particularly	receptive,	especially	for	language
learning.	We	should	expose	children	to	a	second
language	as	early	as	possible.	We	should	also
bear	in	mind	that	plasticity	extends	at	least	until
adolescence.	During	this	entire	period,	foreign
language	immersion	can	transform	the	brain.

Enrich	the	environment.	Learning	wise,	the
child’s	brain	is	the	most	powerful	of
supercomputers.	We	should	respect	it	by
providing	it	with	the	right	data	at	an	early	age:
word	or	construction	games,	stories,	puzzles	….
Let’s	not	hesitate	to	hold	serious	talks	with	our
children,	to	answer	their	questions,	even	the
most	difficult,	using	an	elaborate	vocabulary,	and
to	explain	to	them	what	we	understand	of	the



world.	By	giving	our	little	ones	an	enriched
environment,	particularly	regarding	languages,
we	maximize	their	brain	growth	and	prolong	their
juvenile	plasticity.

Rescind	the	idea	that	all	children	are	different.
The	idea	that	each	of	us	has	a	distinct	learning
style	is	a	myth.	Brain	imaging	shows	that	we	all
rely	on	very	similar	brain	circuits	and	learning
rules.	The	brain	circuits	for	reading	and
mathematics	are	the	same	in	each	of	us,	give	or
take	a	few	millimeters—even	in	blind	children.
We	all	face	similar	hurdles	in	learning,	and	the
same	teaching	methods	can	surmount	them.
Individual	differences,	when	they	exist,	lie	more
in	children’s	extant	knowledge,	motivation,	and
the	rate	at	which	they	learn.	Let’s	carefully
determine	each	child’s	current	level	in	order	to
select	the	most	relevant	problems—but	above
all,	let’s	ensure	that	all	children	acquire	the
fundamentals	of	language,	literacy,	and
mathematics	that	everyone	needs.

Pay	attention	to	attention.	Attention	is	the
gateway	to	learning:	virtually	no	information	will
be	memorized	if	it	has	not	previously	been
amplified	by	attention	and	awareness.	Teachers
should	become	masters	at	capturing	their



students’	attention	and	directing	it	to	what
matters.	This	implies	carefully	getting	rid	of	any
source	of	distraction:	overly	illustrated	textbooks
and	excessively	decorated	classrooms	only
distract	children	from	their	primary	task	and
prevent	them	from	concentrating.

Keep	children	active,	curious,	engaged,	and
autonomous.	Passive	students	do	not	learn
much.	Make	them	more	active.	Engage	their
intelligence	so	that	their	minds	sparkle	with
curiosity	and	constantly	generate	new
hypotheses.	But	do	not	expect	them	to	discover
everything	on	their	own:	guide	them	through	a
structured	curriculum.

Make	every	school	day	enjoyable.	Reward
circuits	are	essential	modulators	of	brain
plasticity.	Activate	them	by	rewarding	every	effort
and	making	every	hour	of	class	fun.	No	child	is
insensitive	to	material	rewards—but	their	social
brains	respond	equally	to	smiles	and
encouragement.	The	feeling	of	being
appreciated	and	the	awareness	of	one’s	own
progress	are	rewards	in	and	of	themselves.
Conversely,	do	away	with	the	anxiety	and	stress
that	prevent	learning—especially	in	mathematics.



Encourage	efforts.	A	pleasurable	school
experience	is	not	synonymous	with	“effortless.”
On	the	contrary,	the	most	interesting	things	to
learn—reading,	math,	or	playing	an	instrument—
require	years	of	practice.	The	belief	that
everything	comes	easy	can	lead	children	to	think
that	they	are	dunces	if	they	do	not	succeed.
Explain	to	them	that	all	students	must	try	hard
and	that,	when	they	do,	everyone	makes
progress.	Adopt	a	growth	mindset,	not	a	fixed
mindset.

Help	students	deepen	their	thinking.	The
deeper	our	brain	processes	information,	the
better	we	can	remember.	Never	be	content	with
superficial	learning;	always	aim	for	deeper
understanding.	And	remember	Henry	Roediger’s
words:	“Making	learning	conditions	more
difficult,	thus	requiring	students	to	engage	more
cognitive	effort,	often	leads	to	enhanced
retention.”

Set	clear	learning	objectives.	Students	learn
best	when	the	purpose	of	learning	is	clearly
stated	to	them	and	when	they	can	see	that
everything	at	their	disposal	converges	toward
that	purpose.	Clearly	explain	what	is	expected	of
them,	and	stay	focused	on	that	goal.



Accept	and	correct	mistakes.	To	update	their
mental	models,	our	brain	areas	must	exchange
error	messages.	Error	is	therefore	the	very
condition	of	learning.	Let	us	not	punish	errors,
but	correct	them	quickly,	by	giving	children
detailed	but	stress-free	feedback.	According	to
the	Education	Endowment	Foundation’s
synthesis,	the	quality	of	the	feedback	that
teachers	provide	to	their	students	is	the	most
effective	lever	for	academic	progress.

Practice	regularly.	One-shot	learning	is	not
enough—children	need	to	consolidate	what	they
have	learned	to	render	it	automatic,	unconscious,
and	reflexive.	Such	routinization	frees	up	our
prefrontal	and	parietal	circuits,	allowing	them	to
attend	to	other	activities.	The	most	effective
strategy	is	to	space	out	learning:	a	little	bit	every
day.	Spacing	out	practice	or	study	sessions
allows	information	to	be	permanently	imprinted
to	memory.

Let	students	sleep.	Sleep	is	an	essential
ingredient	of	our	learning	algorithm.	Our	brain
benefits	each	time	we	sleep,	even	when	we	nap.
So,	let	us	make	sure	that	our	children	sleep	long
and	deep.	To	get	the	most	out	of	our	brain’s
unconscious	night	work,	studying	a	lesson	or



rereading	a	problem	just	before	falling	asleep
can	be	a	nifty	trick.	And	because	adolescents’
sleep	cycle	is	shifted,	let’s	not	wake	them	up	too
early!

Only	by	getting	to	know	ourselves	better	can	we
make	the	most	of	the	powerful	algorithms	with	which
our	brains	are	equipped.	All	children	would	probably
benefit	from	knowing	the	four	pillars	of	learning:
attention,	active	engagement,	error	feedback,	and
consolidation.	Four	slogans	effectively	summarize	them:
“Fully	concentrate,”	“participate	in	class,”	“learn	from
your	mistakes,”	and	“practice	every	day,	take
advantage	of	every	night.”	These	are	very	simple
messages	that	we	should	all	heed.

AN	ALLIANCE	FOR	THE	SCHOOLS	OF	TOMORROW

How	can	we	harmonize	our	school	system	with	the
discoveries	of	cognitive	and	brain	sciences?	A	new
alliance	is	needed.	Just	like	medicine	relies	on	a	whole
pyramid	of	biological	and	drug-design	research,	I
believe	that	in	the	future,	education	will	increasingly
rely	on	evidence-based	research,	including	fundamental
laboratory	experiments,	as	well	as	classroom-scale	trials
and	deployment	studies.	Only	by	combining	the
distinct	forces	of	teachers,	parents,	and	scientists	will
we	attain	the	worthy	goal	of	reviving	the	curiosity	and



joy	of	learning	in	all	children,	in	order	to	help	them
optimize	their	cognitive	potential.
Experts	of	the	classroom,	teachers	are	entrusted	with

the	priceless	task	of	educating	our	children,	who	will
soon	have	the	future	of	this	world	in	their	hands.	Yet	we
often	leave	teachers	with	very	minimal	resources	to
accomplish	this	goal.	They	deserve	much	greater
respect	and	investment.	Teachers	today	face
increasingly	severe	challenges,	including	diminishing
resources,	expanding	class	sizes,	growing	violence,	and
the	relentless	tyranny	of	the	curriculum.	Amazingly,
most	teachers	receive	little	or	no	professional	training	in
the	science	of	learning.	My	feeling	is	that	we	should
urgently	change	this	state	of	affairs,	because	we	now
possess	considerable	scientific	knowledge	about	the
brain’s	learning	algorithms	and	the	pedagogies	that	are
the	most	efficient.	I	hope	that	this	book	can	provide	a
small	step	toward	a	global	revision	of	teacher	training
programs,	in	order	to	offer	them	the	best	tools	from
cognitive	science,	in	line	with	their	commitment	to	our
children.
I	hope	that	teachers	will	also	agree	that	their

pedagogical	freedom	should	in	no	way	be	restricted	by
the	growing	science	of	the	learning	brain.	On	the
contrary,	one	goal	of	this	book	is	to	allow	them	to
better	exercise	this	freedom.	“I	think	of	a	hero,”	said
Bob	Dylan,	“as	someone	who	understands	the	degree



of	responsibility	that	comes	with	his	freedom.”	Genuine
pedagogical	creativity	can	only	come	from	full
awareness	of	the	range	of	available	strategies	and	the
ability	to	choose	carefully	from	them,	with	full
knowledge	of	their	impact	on	students.	The	principles	I
have	articulated	throughout	this	book	are	compatible
with	multiple	pedagogical	approaches,	and	much	can
be	done	to	put	them	into	practice	in	the	classroom.	I
expect	a	lot	from	teachers’	inventiveness,	because	I
think	it	is	essential	to	children’s	enthusiasm.
In	my	opinion,	the	schools	of	the	future	should	also

have	a	much	more	important	place	for	parents.	They
are	the	primary	actors	in	a	child’s	development,	whose
actions	precede	and	prolong	school.	Home	is	where
children	have	a	chance	to	expand,	through	work	and
games,	the	knowledge	that	they	acquired	in	class.
Family	is	open	seven	days	a	week	and,	thus,	can,	better
than	school,	take	full	advantage	of	each	alternation	of
wakefulness	and	sleep,	of	learning	and	consolidation.
Schools	should	devote	more	time	to	parent	training,
because	this	is	one	of	the	most	effective	interventions:
well-trained	parents	can	be	invaluable	teammates	for
teachers	and	astute	observers	of	their	children’s
difficulties.
Finally,	scientists	must	engage	with	teachers	and

schools	in	order	to	consolidate	the	growing	field	of
education	science.	Compared	with	the	huge	progress



of	the	past	thirty	years	in	cognitive	and	brain	sciences,
educational	research	remains	a	relatively	neglected
area	of	study.	Research	organizations	should	encourage
scientists	to	conduct	major	research	programs	in	all
areas	of	learning	sciences,	from	neuroscience	and	brain
imaging	to	the	neuropsychology	of	developmental
disorders,	cognitive	psychology,	and	educational
sociology.	Scaling	up	from	the	laboratory	to	the
classroom	is	not	as	easy	as	it	sounds,	and	we	are	in
great	need	of	full-scale	experiments	in	schools.
Cognitive	science	can	help	design	and	evaluate
innovative	educational	tools.
Just	as	medicine	is	based	on	biology,	the	field	of

education	must	be	grounded	in	a	systematic	and
rigorous	research	ecosystem	that	brings	together
teachers,	patients,	and	researchers,	in	a	ceaseless
search	for	more	effective,	evidence-based	learning
strategies.



Figure	1.
Brain	plasticity	can	sometimes	overcome	major	obstacles.



At	the	age	of	three,	Nico’s	right	hemisphere	was	surgically
removed	(see	MRI	slices	in	the	middle).	Yet	this	major	loss
did	 not	 prevent	 him	 from	 becoming	 an	 accomplished
artist,	 capable	of	painting	both	excellent	 copies	 (bottom)
and	original	work	 (top).	Learning	squeezed	all	his	 talents,
including	 language,	 math,	 reading,	 and	 painting,	 into	 a
single	hemisphere.



Figure	2.
Learning	means	developing	a	hierarchy	of	representations
appropriate	 to	 the	 problem	 at	 hand.	 In	 the	 GoogLeNet
network,	which	 learns	 to	 identify	 images,	 the	 adjustment
of	millions	of	parameters	allows	each	level	of	the	hierarchy
to	recognize	a	useful	aspect	of	reality.	At	the	lowest	level,
the	simulated	neurons	are	sensitive	to	basic	features	such
as	 oriented	 lines	 or	 textures.	 As	 we	 climb	 the	 hierarchy,
neurons	 respond	 to	 increasingly	 complex	 shapes,
including	houses,	eyes,	and	insects.



Figure	3.
How	 does	 a	 deep	 neural	 network	 learn	 to	 categorize
handwritten	numbers?	This	is	a	difficult	problem	because	a
given	digit	can	be	written	in	hundreds	of	different	ways.	At
the	 lowest	 level	 of	 the	 neuronal	 hierarchy	 (bottom	 right),
the	artificial	neurons	confuse	numbers	that	look	alike,	such
as	9	and	4.	The	higher	up	in	the	hierarchy	we	go,	the	more
successful	neurons	are	in	grouping	all	images	of	the	same
number	and	separating	them	by	clear	boundaries.



Figure	4.
Learning	 means	 inferring	 the	 grammar	 of	 a	 domain.	 At
MIT,	 two	 computer	 scientists	 invented	 an	 algorithm	 that
discovers	 the	 hidden	 structure	 of	 a	 scientific	 field.	 The
system	 is	 endowed	 with	 a	 grammar	 of	 rules	 whose
combinations	 generate	 all	 kinds	 of	 new	 structures:	 lines,



planes,	circles,	cylinders	….	By	selecting	the	structure	that
best	 fits	 the	 data,	 the	 algorithm	 makes	 discoveries	 that
took	 scientists	 years:	 the	 tree	 of	 animal	 species	 (Darwin,
1859),	the	roundness	of	the	earth	(Parmenides,	600	BCE),
and	the	circle	of	colors	(Newton,	1675).



Figure	5.
Far	from	being	blank	slates,	babies	possess	vast	amounts
of	 knowledge.	 In	 the	 laboratory,	 researchers	 uncover	 the
sophistication	 of	 babies’	 intuitions	 by	 measuring	 their
surprise	when	they	are	subjected	to	situations	that	violate
the	laws	of	physics,	arithmetic,	probability,	or	geometry.



Figure	6.
At	 birth,	 the	 infant	 brain	 already	 channels	 spoken
language	 into	 specific	 circuits	 of	 the	 left	 hemisphere.
When	 babies	 are	 scanned	 using	 functional	 MRI	 while
listening	 to	 sentences	 in	 their	 mother	 tongue,	 a	 specific
network	of	brain	regions	lights	up—the	same	as	in	adults.
The	 activity	 starts	 in	 the	 primary	 auditory	 area,	 then
gradually	extends	to	the	temporal	and	frontal	areas,	in	the
same	 order	 as	 in	 the	 adult	 brain.	 These	 data	 refute	 the
idea	of	 an	 initially	disorganized	brain,	 a	mere	blank	 slate
that	awaits	the	imprint	of	its	environment.



Figure	7.
The	 architecture	 of	 the	 human	 brain	 has	 a	 long
evolutionary	 history.	 Many	 specialized	 regions	 (here,	 the
primary	 sensory	 areas)	 share	 their	basic	 layout	with	other
species.	 They	 are	 wired	 in	 utero,	 under	 the	 influence	 of
many	 genes,	 and	 are	 already	 active	 during	 the	 third
trimester	of	pregnancy.	The	primate	brain	is	characterized
by	proportionally	 smaller	 sensory	areas	and	an	enormous
expansion	 of	 the	 cognitive	 regions	 of	 the	 parietal	 (gray),
temporal,	 and	 especially	 prefrontal	 cortex.	 In	 Homo



sapiens,	these	regions	are	remarkably	plastic:	they	shelter
a	 language	 of	 thought	 and	 enable	 us	 to	 increase	 our
knowledge	throughout	life.



Figure	8.
In	 the	 first	weeks	of	pregnancy,	 the	body	organizes	 itself
on	 a	 genetic	 basis.	 No	 learning	 is	 necessary	 for	 the	 five
fingers	 to	 form	 and	 receive	 their	 specific	 innervation.
Similarly,	 the	 fundamental	architecture	of	 the	brain	 is	 laid



down	in	the	absence	of	any	learning.	At	birth,	the	cortex	is
already	 organized,	 folded,	 and	 connected	 in	 a	 manner
which	 is	 common	 to	 all	 human	 beings,	 and	 which
distinguishes	 us	 from	 all	 other	 primates.	 The	 detailed
wiring,	 however,	 is	 free	 to	 vary	 depending	 on	 the
environment.	By	the	third	trimester	of	gestation,	 the	 fetal
brain	already	begins	to	adapt	to	the	information	it	receives
from	the	outside	world.



Figure	9.
The	human	cortex	is	subdivided	into	specialized	areas.	As
early	 as	 1909,	 the	 German	 neurologist	 Korbinian
Brodmann	 (1868–1918)	 noted	 that	 the	 size	 and
distribution	of	neurons	vary	across	the	different	regions	of
the	 cortex.	 For	 instance,	 within	 Broca’s	 area,	 which	 is
involved	 in	 language	 processing,	 Brodmann	 delineated
three	areas	(numbered	44,	45,	and	47).	These	distinctions
have	 been	 confirmed	 and	 refined	 by	molecular	 imaging.
The	 cortex	 is	 tiled	 with	 distinct	 areas	 whose	 boundaries
are	 marked	 by	 sudden	 variations	 in	 neurotransmitter
receptor	 density.	 During	 pregnancy,	 certain	 genes	 are



selectively	expressed	in	the	different	regions	of	the	cortex
and	help	subdivide	it	into	specialized	organs.



Figure	10.
When	 a	 physical	 system	 self-organizes,	 be	 it	 lava	 or
beeswax,	 it	 is	 not	 uncommon	 for	 hexagons	 to	 form.	 The
nervous	 system	 is	 no	 exception:	 in	 a	 region	 of	 the
entorhinal	 cortex,	 which	 acts	 as	 the	 GPS	 of	 the	 brain,
neurons	self-organize	into	“grid	cells”	that	tile	the	physical
space	with	a	lattice	of	triangles	and	hexagons.	When	a	rat
explores	 a	 large	 room,	 each	 neuron	 fires	 only	 when	 the
animal	 lies	 at	 the	 vertex	 of	 one	 of	 those	 triangles.	 Such
grid	 cells	 appear	 a	 single	day	 after	 the	mouse	begins	 to



move	 around:	 the	 sense	 of	 space	 is	 based	on	 an	 almost
innate	GPS	circuit.



Figure	11.
Synaptic	plasticity	 allows	 the	brain	 to	partially	 reorganize
itself	 when	 it	 suffers	 serious	 damage.	 The	 patient	 A.H.
(top)	 was	 born	 with	 only	 one	 cerebral	 hemisphere:	 at
seven	weeks	 of	 gestation,	 her	 right	 hemisphere	 stopped
developing.	 In	 a	 normal	 brain	 (bottom),	 the	 early	 visual



areas	of	the	left	hemisphere	represent	only	the	right	half	of
the	 world	 (colored	 blue	 and	 green	 in	 the	 central	 disc).
However,	 in	 patient	A.H.,	 very	 small	 regions	 reorganized
and	began	to	respond	to	the	left	half	of	the	world	(in	red,
indicated	by	white	arrows).	Thus,	A.H.	 is	not	 totally	blind
on	 the	 left	 side,	 unlike	 an	 adult	 who	 suffered	 the	 same
lesion.	Nevertheless,	 this	 reorganization	 is	modest:	 in	 the
primary	 visual	 cortex,	 genetic	 determinism	 trumps	 brain
plasticity.



Figure	12.
Education	consists	of	 recycling	ancient	brain	circuits,	 thus
redirecting	 them	toward	new	 functions.	Since	 infancy,	we
all	 possess	 areas	 for	 representing	 numbers	 (in	 green),
which	 we	 also	 use	 for	 mental	 calculation	 (in	 blue).
Remarkably,	even	professional	mathematicians	continue	to
use	 the	 same	 brain	 regions	 when	 thinking	 about	 higher-
level	math	concepts	(in	red).	These	neural	networks	initially
respond	to	concrete	sets	of	objects,	but	later	get	recycled
for	more	abstract	concepts.



Figure	13.
The	 acquisition	of	mathematics	 is	 largely	 independent	of
sensory	 experience.	 Even	 the	 blind	 can	 become	 superb
mathematicians—and	 in	 them,	 the	 same	 regions	 of
parietal,	 temporal,	and	frontal	cortex	are	activated	during



mathematical	reflection	as	in	sighted	mathematicians.	The
only	difference	 is	 that	they	also	recycle	their	visual	cortex
to	do	math.



Figure	14.
Learning	to	read	recycles	a	network	of	brain	areas	involved
in	 vision	 and	 spoken	 language.	 The	 regions	 in	 color	 are
those	 affected	 by	 reading	 acquisition:	 their	 activity	 in
response	 to	 a	 written	 sentence	 increases	 with	 reading
score,	 from	 pure	 illiterates	 to	 expert	 readers.	 Literacy
affects	 the	 brain	 in	 two	 different	 ways:	 it	 specializes	 the
visual	 areas	 for	 written	 letters,	 particularly	 in	 a	 region	 of
the	 left	 hemisphere	 called	 the	 “visual	 word	 form	 area,”



and	 it	 activates	 the	 circuits	 of	 spoken	 language	 through
vision.



Figure	15.
Functional	 MRI	 can	 be	 used	 to	 track	 the	 acquisition	 of
literacy	 in	 children.	 As	 soon	 as	 a	 child	 learns	 to	 read,	 a
visual	region	of	the	left	hemisphere	starts	to	specialize	for
letter	 strings.	 Reading	 recycles	 part	 of	 the	 mosaic	 of
regions	 that	 all	 primates	 use	 to	 recognize	 faces,	 objects,
and	places.



Figure	16.
Alerting	 signals	 can	 massively	 modulate	 learning.
Neuromodulators	 such	 as	 serotonin,	 acetylcholine,	 and
dopamine,	 whose	 signals	 are	 broadcast	 to	 much	 of	 the
cortex,	tell	us	when	to	pay	attention	and	seem	to	force	the
brain	to	learn.	In	the	experiment	shown	at	the	bottom,	rats
listened	 to	 a	 nine-kilohertz	 sound	 which	 was	 associated
with	 an	 electrical	 stimulation	 of	 the	 basal	 nucleus	 of
Meynert,	thus	triggering	the	release	of	acetylcholine	in	the



cortex.	 After	 a	 few	 days	 of	 exposure,	 the	 entire	 auditory
cortex	 was	 invaded	 by	 this	 sound	 frequency	 and	 its
neighbors	(regions	in	blue).



Figure	17.
Error	 feedback	 is	 the	third	pillar	of	 learning.	By	detecting
and	correcting	 its	errors,	 the	brain	progressively	 learns	to
adjust	 its	 models	 of	 the	 environment.	 Virtually	 all	 brain
regions	 emit	 and	 exchange	 error	 signals.	 In	 this
experiment,	 the	 brain	 learns	 to	 detect	 violations	 in	 a
sequence	of	sounds.	First,	a	short	melody	of	 five	notes	 is
played	several	times.	When	the	sequence	changes	without
warning,	 a	 surprise	 response	 (in	 red)	 signals	 the	 error	 to
other	regions	of	the	brain	and	allows	them	to	amend	their
predictions.	 Auditory	 areas	 react	 to	 local	 violations	 of
expectations	 (top),	 while	 an	 extensive	 network,	 which
includes	 the	 prefrontal	 cortex,	 responds	 to	 global
violations	of	the	entire	melody	(bottom).



Figure	18.
Consolidation	 is	 the	 fourth	 pillar	 of	 learning.	 Initially,	 all
learning	 requires	 considerable	 effort,	 accompanied	 by
intense	 activation	 of	 the	 parietal	 and	 frontal	 regions	 for
spatial	and	executive	attention.	For	a	beginner	reader,	for
instance,	 deciphering	 words	 is	 a	 slow,	 effortful,	 and
sequential	process:	the	more	letters	a	word	has,	the	slower
the	 child	 reads	 (top).	 With	 practice,	 automaticity	 arises:
reading	becomes	a	fast,	parallel,	and	unconscious	process
(bottom).	A	specialized	reading	circuit	emerges,	freeing	up
cortical	resources	for	other	tasks.



Figure	19.
Sleep	 plays	 an	 important	 role	 in	 the	 consolidation	 of
learning.	 When	 a	 rat	 falls	 asleep,	 the	 neurons	 in	 its
hippocampus	 replay,	 often	 at	 an	 accelerated	 speed,	 the
very	same	sequences	of	activity	that	it	experienced	when	it
was	awake.	This	activity,	which	extends	to	the	cortex,	may
be	 repeated	 hundreds	 of	 times	 during	 the	 night.	 Such
neuronal	 replay	 helps	 consolidate	 and	 automatize	 what
was	learned	during	the	previous	day.	While	we	sleep,	our
brain	 may	 even	 discover	 regularities	 that	 eluded	 us	 the
day	before.
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Notes

INTRODUCTION

1. 	See	the	movies	The	Miracle	Worker	(1962)	and
Marie’s	Story	(2014),	as	well	as	read	the
following	books:	Arnould,	1900;	Keller,	1903.

2. 	Learning	in	the	nematode	C.	elegans:	Bessa,
Maciel,	and	Rodrigues,	2013;	Kano	et	al.,
2008;	Rankin,	2004.

3. 	Website	of	the	Education	Endowment
Foundation	(EEF):
educationendowmentfoundation.org.uk.

4. 	The	brain	constantly	keeps	track	of	uncertainty:
Meyniel	and	Dehaene,	2017;	Heilbron	and
Meyniel,	2019.

CHAPTER	1:	SEVEN	DEFINITIONS	OF	LEARNING

1. 	You	can	try	this	experiment	for	yourself	at	the
C3RV34U	exhibition	I	organized	at	the	Cité
des	sciences,	Paris’s	main	science	museum.

2. 	LeNet	artificial	neural	network:	LeCun,	Bottou,
Bengio,	and	Haffner,	1998.

http://educationendowmentfoundation.org.uk


3. 	Visualizing	the	hierarchy	of	hidden	units	in	the
GoogLeNet	artificial	neural	network:	Olah,
Mordvintsev,	and	Schubert,	2017.

4. 	Progressive	separation	of	the	ten	digits	by	a
deep	neural	network:	Guerguiev,	Lillicrap,	and
Richards,	2017.

5. 	Reinforcement	learning:	Mnih	et	al.,	2015;
Sutton	and	Barto,	1998.

6. 	Artificial	neural	network	that	learns	to	play	Atari
video	games:	Mnih	et	al.,	2015.

7. 	Artificial	neural	network	that	learns	to	play	Go:
Banino	et	al.,	2018;	Silver	et	al.,	2016.

8. 	Adversarial	learning:	Goodfellow	et	al.,	2014.

9. 	Convolutional	neural	networks:	LeCun,	Bengio,
and	Hinton,	2015;	LeCun	et	al.,	1998.

10. 	Darwin’s	natural	selection	algorithm:	Dennett,
1996.

CHAPTER	2:	WHY	OUR	BRAIN	LEARNS	BETTER	THAN
CURRENT	MACHINES

1. 	Artificial	neural	networks	primarily	implement
the	unconscious	operations	of	the	brain:
Dehaene,	Lau,	and	Kouider,	2017.

2. 	Artificial	neural	networks	tend	to	learn
superficial	regularities:	Jo	and	Bengio,	2017.



3. 	Generation	of	images	that	confuse	humans	as
well	as	artificial	neural	networks:	Elsayed	et	al.,
2018.

4. 	Artificial	neural	network	that	learns	to
recognize	CAPTCHAs:	George	et	al.,	2017.

5. 	Critique	of	the	learning	speed	in	artificial	neural
networks:	Lake,	Ullman,	Tenenbaum,	and
Gershman,	2017.

6. 	Lack	of	systematicity	in	artificial	neural
networks:	Fodor	and	Pylyshyn,	1988;	Fodor
and	McLaughlin,	1990.

7. 	Language	of	thought	hypothesis:	Amalric,
Wang,	et	al.,	2017;	Fodor,	1975.

8. 	Learning	to	count	as	program	inference:
Piantadosi,	Tenenbaum,	and	Goodman,	2012;
see	also	Piantadosi,	Tenenbaum,	and
Goodman,	2016.

9. 	Recursive	representations	as	a	singularity	of	the
human	species:	Dehaene,	Meyniel,	Wacongne,
Wang,	and	Pallier,	2015;	Everaert,	Huybregts,
Chomsky,	Berwick,	and	Bolhuis,	2015;	Hauser,
Chomsky,	and	Fitch,	2002;	Hauser	and
Watumull,	2017.

10. 	Human	singularity	in	coding	an	elementary
sequence	of	sounds:	Wang,	Uhrig,	Jarraya,



and	Dehaene,	2015.

11. 	Acquisition	of	geometrical	rules—slow	in
monkeys,	ultrafast	in	children:	Jiang	et	al.,
2018.

12. 	The	conscious	human	brain	resembles	a	serial
Turing	machine:	Sackur	and	Dehaene,	2009;
Zylberberg,	Dehaene,	Roelfsema,	and	Sigman,
2011.

13. 	Fast	learning	of	word	meaning:	Tenenbaum,
Kemp,	Griffiths,	and	Goodman,	2011;	Xu	and
Tenenbaum,	2007.

14. 	Word	learning	based	on	shared	attention:
Baldwin	et	al.,	1996.

15. 	Knowledge	of	determiners	and	other	function
words	at	twelve	months:	Cyr	and	Shi,	2013;	Shi
and	Lepage,	2008.

16. 	Mutual	exclusivity	principle	in	word	learning:
Carey	and	Bartlett,	1978;	Clark,	1988;
Markman	and	Wachtel,	1988;	Markman,
Wasow,	and	Hansen,	2003.

17. 	Reduced	reliance	on	mutual	exclusivity	in
bilinguals:	Byers-Heinlein	and	Werker,	2009.

18. 	Rico,	a	dog	who	learned	hundreds	of	words:
Kaminski,	Call,	and	Fischer,	2004.



19. 	Modelling	of	an	“artificial	scientist”:	Kemp	and
Tenenbaum,	2008.

20. 	Discovering	the	causality	principle:	Goodman,
Ullman,	and	Tenenbaum,	2011;	Tenenbaum	et
al.,	2011.

21. 	The	brain	as	a	generative	model:	Lake,
Salakhutdinov,	and	Tenenbaum,	2015;	Lake	et
al.,	2017.

22. 	Probability	theory	is	the	logic	of	science:
Jaynes,	2003.

23. 	Bayesian	model	of	information	processing	in
the	cortex:	Friston,	2005.	For	empirical	data	on
hierarchical	passing	of	probabilistic	error
messages	in	the	cortex,	see,	for	instance,
Chao,	Takaura,	Wang,	Fujii,	and	Dehaene,
2018;	Wacongne	et	al.,	2011.

CHAPTER	3:	BABIES’	INVISIBLE	KNOWLEDGE

1. 	Object	concept	in	infants:	Baillargeon	and
DeVos,	1991;	Kellman	and	Spelke,	1983.

2. 	Fast	acquisition	of	how	objects	fall,	and	what
suffices	to	keep	them	supported:	Baillargeon,
Needham,	and	DeVos,	1992;	Hespos	and
Baillargeon,	2008.



3. 	Number	concept	in	infants:	Izard,	Dehaene-
Lambertz,	and	Dehaene,	2008;	Izard,	Sann,
Spelke,	and	Streri,	2009;	Starkey	and	Cooper,
1980;	Starkey,	Spelke,	and	Gelman,	1990.	A
detailed	review	of	these	findings	can	be	found
in	the	second	edition	of	my	book	The	Number
Sense	(Dehaene,	2011).

4. 	Multimodal	knowledge	of	numbers	in
neonates:	Izard	et	al.,	2009.

5. 	Small-number	addition	and	subtraction	in
infants:	Koechlin,	Dehaene,	and	Mehler,	1997;
Wynn,	1992.

6. 	Large-number	addition	and	subtraction	in
infants:	McCrink	and	Wynn,	2004.

7. 	The	accuracy	of	number	sense	gets	refined
with	age	and	education:	Halberda	and
Feigenson,	2008;	Piazza	et	al.,	2010;	Piazza,
Pica,	Izard,	Spelke,	and	Dehaene,	2013.

8. 	Number	sense	in	chicks:	Rugani,	Fontanari,
Simoni,	Regolin,	and	Vallortigara,	2009;
Rugani,	Vallortigara,	Priftis,	and	Regolin,	2015.

9. 	Number	neurons	in	untrained	animals:	Ditz	and
Nieder,	2015;	Viswanathan	and	Nieder,	2013.

10. 	Brain-imaging	and	single-cell	evidence	for
number	neurons	in	humans:	Piazza,	Izard,



Pinel,	Le	Bihan,	and	Dehaene,	2004;	Kutter,
Bostroem,	Elger,	Mormann,	and	Nieder,	2018.

11. 	Core	knowledge	in	infants:	Spelke,	2003.

12. 	Bayesian	reasoning	in	infants:	Xu	and	Garcia,
2008.

13. 	The	child	as	a	“scientist	in	the	crib”:	Gopnik,
Meltzoff,	and	Kuhl,	1999;	Gopnik	et	al.,	2004.

14. 	Infants’	understanding	of	probabilities,
containers,	and	randomness:	Denison	and	Xu,
2010;	Gweon,	Tenenbaum,	and	Schulz,	2010;
Kushnir,	Xu,	and	Wellman,	2010.

15. 	Babies	distinguish	whether	a	machine	or	a
human	draws	from	a	container:	Ma	and	Xu,
2013.

16. 	Logical	reasoning	in	twelve-month-old	babies:
Cesana-Arlotti	et	al.,	2018.

17. 	Infants’	understanding	of	intentions:	Gergely,
Bekkering,	and	Király,	2002;	Gergely	and
Csibra,	2003;	see	also	Warneken	and
Tomasello,	2006.

18. 	Ten-month-old	infants	infer	other	people’s
preferences:	Liu,	Ullman,	Tenenbaum,	and
Spelke,	2017.

19. 	Babies	evaluate	other	people’s	actions:	Buon
et	al.,	2014.



20. 	Babies	distinguish	intentional	and	accidental
actions:	Behne,	Carpenter,	Call,	and
Tomasello,	2005.

21. 	Face	processing	by	fetuses	in	utero:	Reid	et	al.,
2017.

22. 	Face	recognition	in	infancy	and	development
of	cortical	responses	to	faces:	Adibpour,
Dubois,	and	Dehaene-Lambertz,	2018;	Deen
et	al.,	2017;	Livingstone	et	al.,	2017.

23. 	Face	recognition	in	the	first	year	of	life:	Morton
and	Johnson,	1991.

24. 	Babies	prefer	to	listen	to	their	maternal
language:	Mehler	et	al.,	1988.

25. 	“The	baby	in	my	womb	leaped	for	joy”:	Luke
1:44.

26. 	See	my	book	Consciousness	and	the	Brain
(2014).

27. 	Lateralization	of	language	and	voice	processing
in	premature	babies:	Mahmoudzadeh	et	al.,
2013.

28. 	Word	segmentation	in	infants:	Hay,	Pelucchi,
Graf	Estes,	and	Saffran,	2011;	Saffran,	Aslin,
and	Newport,	1996.

29. 	Young	children	detect	grammatical	violations:
Bernal,	Dehaene-Lambertz,	Millotte,	and



Christophe,	2010.

30. 	Limits	of	language-learning	experiments	in
animals:	see,	for	instance,	Penn,	Holyoak,	and
Povinelli,	2008;	Terrace,	Petitto,	Sanders,	and
Bever,	1979;	Yang,	2013.

31. 	Fast	emergence	of	language	in	deaf
communities:	Senghas,	Kita,	and	Özyürek,
2004.

CHAPTER	4:	THE	BIRTH	OF	A	BRAIN
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Lambertz	et	al.,	2006;	Dehaene-Lambertz,
Dehaene,	and	Hertz-Pannier,	2002.

2. 	Empiricist	view	of	the	infant’s	brain:	see,	for
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Sejnowski,	1997.

3. 	Evolution	of	cortical	areas	(figure	7	in	the	color
insert):	Krubitzer,	2007.
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humans:	Lerner,	Honey,	Silbert,	and	Hasson,
2011;	Pallier,	Devauchelle,	and	Dehaene,
2011.
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tracts	at	birth:	Dehaene-Lambertz	and	Spelke,
2015;	Dubois	et	al.,	2015.



6. 	Hypothesis	of	a	disorganized	brain	that
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Quartz	and	Sejnowski,	1997.
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Brodmann,	1909.
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areas:	Kwan	et	al.,	2012;	Sun	et	al.,	2005.
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al.,	2009;	Leroy	et	al.,	2015.
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Sun	et	al.,	2012.

12. 	Self-organizing	model	of	cortical	folds:	Lefevre
and	Mangin,	2010.

13. 	Grid	cells	in	rats:	Banino	et	al.,	2018;	Brun	et
al.,	2008;	Fyhn,	Molden,	Witter,	Moser,	and
Moser,	2004;	Hafting,	Fyhn,	Molden,	Moser,
and	Moser,	2005.

14. 	Self-organizing	models	of	grid	cells:	Kropff	and
Treves,	2008;	Shipston-Sharman,	Solanka,	and
Nolan,	2016;	Widloski	and	Fiete,	2014;	Yoon
et	al.,	2013.



15. 	Fast	emergence	of	grid	cells,	place	cells,	and
head	direction	cells	during	development:
Langston	et	al.,	2010;	Wills,	Cacucci,	Burgess,
and	O’Keefe,	2010.

16. 	Grid	cells	in	humans:	Doeller,	Barry,	and
Burgess,	2010;	Nau,	Navarro	Schröder,
Bellmund,	and	Doeller,	2018.

17. 	Spatial	navigation	in	a	blind	child:	Landau,
Gleitman,	and	Spelke,	1981.
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versus	places:	Deen	et	al.,	2017;	Livingstone	et
al.,	2017.
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and	Dehaene,	2009.

20. 	Self-organizing	model	of	number	neurons:
Hannagan,	Nieder,	Viswanathan,	and
Dehaene,	2017.
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22. 	Genes	and	cell	migration	in	dyslexia:
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2006.
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Peyrard-Janvid,	Matsson,	Kere,	and	Klingberg,



2012;	Hoeft	et	al.,	2011;	Niogi	and
McCandliss,	2006.

24. 	Phonological	predictors	of	dyslexia	in	six-
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25. 	Attentional	dyslexia:	Friedmann,	Kerbel,	and
Shvimer,	2010.

26. 	Visual	dyslexia	with	mirror	errors:	McCloskey
and	Rapp,	2000.

27. 	Bell	curve	for	dyslexia:	Shaywitz,	Escobar,
Shaywitz,	Fletcher,	and	Makuch,	1992.

28. 	Cognitive	and	neurological	impairments	in
dyscalculia:	Butterworth,	2010;	Iuculano,	2016.

29. 	Parietal	gray-matter	loss	in	premature	children
with	dyscalculia:	Isaacs,	Edmonds,	Lucas,	and
Gadian,	2001.

CHAPTER	5:	NURTURE’S	SHARE

1. 	Synaptic	hypothesis	of	brain	plasticity:
Holtmaat	and	Caroni,	2016;	Takeuchi,
Duszkiewicz,	and	Morris,	2014.

2. 	Music	activates	reward	circuits:	Salimpoor	et
al.,	2013.
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Lømo,	1973;	Lømo,	2018.
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Pittenger	and	Kandel,	2003.
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Whitlock,	Heynen,	Shuler,	and	Bear,	2006.

6. 	Memory	for	fearful	sounds	in	mice:	Kim	and
Cho,	2017.

7. 	Causal	role	of	synaptic	changes:	Takeuchi	et
al.,	2014.
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memory:	Josselyn,	Köhler,	and	Frankland,
2015;	Poo	et	al.,	2016.

9. 	Working	memory	and	sustained	firing:
Courtney,	Ungerleider,	Keil,	and	Haxby,	1997;
Ester,	Sprague,	and	Serences,	2015;	Goldman-
Rakic,	1995;	Kerkoerle,	Self,	and	Roelfsema,
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Mongillo,	Barak,	and	Tsodyks,	2008.
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of	novel	information:	Genzel	et	al.,	2017;
Lisman	et	al.,	2017;	Schapiro,	Turk-Browne,
Norman,	and	Botvinick,	2016;	Shohamy	and
Turk-Browne,	2013.
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hippocampus	to	cortex:	Kitamura	et	al.,	2017.



13. 	Creation	of	a	false	memory	in	mice:	Ramirez	et
al.,	2013.
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Ramirez	et	al.,	2015.

15. 	Erasing	a	traumatic	memory:	Kim	and	Cho,
2017.
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Lavilléon	et	al.,	2015.

17. 	Tool	and	symbol	learning	in	macaque
monkeys:	Iriki,	2005;	Obayashi	et	al.,	2001;
Srihasam,	Mandeville,	Morocz,	Sullivan,	and
Livingstone,	2012.
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and	Poo,	1997.
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Gaser	and	Schlaug,	2003;	Oechslin,	Gschwind,
and	James,	2018;	Schlaug,	Jancke,	Huang,
Staiger,	and	Steinmetz,	1995.

20. 	Anatomical	changes	due	to	literacy:	Carreiras
et	al.,	2009;	Thiebaut	de	Schotten,	Cohen,
Amemiya,	Braga,	and	Dehaene,	2014.

21. 	Anatomical	changes	after	learning	to	juggle:
Draganski	et	al.,	2004;	Gerber	et	al.,	2014.

22. 	Brain	changes	in	London	taxi	drivers:	Maguire
et	al.,	2000,	2003.



23. 	Non-synaptic	mechanism	of	memory	in	the
cerebellum:	Johansson,	Jirenhed,	Rasmussen,
Zucca,	and	Hesslow,	2014;	Rasmussen,
Jirenhed,	and	Hesslow,	2008.

24. 	Effects	of	physical	exercise	and	nutrition	on	the
brain:	Prado	and	Dewey,	2014;	Voss,	Vivar,
Kramer,	and	van	Praag,	2013.

25. 	Cognitive	deficits	in	children	with	vitamin	B1
(thiamine)	deficiency:	Fattal,	Friedmann,	and
Fattal-Valevski,	2011.

26. 	Brain	plasticity	in	a	child	born	without	a	right
hemisphere:	Muckli,	Naumer,	and	Singer,
2009.

27. 	Turning	auditory	cortex	into	visual	cortex:	Sur,
Garraghty,	and	Roe,	1988;	Sur	and	Rubenstein,
2005.

28. 	Hypothesis	of	a	disorganized	brain	that
receives	the	imprint	of	the	environment:
Quartz	and	Sejnowski,	1997.

29. 	Self-organization	of	visual	maps	by	retinal
waves:	Goodman	and	Shatz,	1993;	Shatz,
1996.

30. 	Progressive	adjustment	of	cortical	spontaneous
activity:	Berkes,	Orbán,	Lengyel,	and	Fiser,
2011;	Orbán,	Berkes,	Fiser,	and	Lengyel,	2016.



31. 	Review	of	the	concept	of	sensitive	periods:
Werker	and	Hensch,	2014.

32. 	Growth	of	human	cortical	neurons:	Conel,
1939;	Courchesne	et	al.,	2007.

33. 	Synaptic	overproduction	and	elimination	in	the
course	of	development:	Rakic,	Bourgeois,
Eckenhoff,	Zecevic,	and	Goldman-Rakic,	1986.

34. 	Distinct	phases	of	synaptic	elimination	in
humans:	Huttenlocher	and	Dabholkar,	1997.

35. 	Progressive	myelination	of	cortical	bundles:
Dubois	et	al.,	2007,	2015;	Flechsig,	1876.

36. 	Acceleration	of	visual	responses	in	babies:
Adibpour	et	al.,	2018;	Dehaene-Lambertz	and
Spelke,	2015.

37. 	Slowness	of	conscious	processing	in	babies:
Kouider	et	al.,	2013.

38. 	Sensitive	period	for	binocular	vision:
Epelbaum,	Milleret,	Buisseret,	and	Duffer,
1993;	Fawcett,	Wang,	and	Birch,	2005;
Hensch,	2005.

39. 	Loss	of	the	capacity	to	discriminate	non-native
phonemes:	Dehaene-Lambertz	and	Spelke,
2015;	Maye,	Werker,	and	Gerken,	2002;	Pena,
Werker,	and	Dehaene-Lambertz,	2012;	Werker
and	Tees,	1984.



40. 	Partial	recovery	of	the	discrimination	of	/R/	and
/L/	in	Japanese	speakers:	McCandliss,	Fiez,
Protopapas,	Conway,	and	McClelland,	2002.

41. 	Auditory	cortex	anatomy	predicts	the	capacity
to	learn	foreign	contrasts:	Golestani,	Molko,
Dehaene,	Le	Bihan,	and	Pallier,	2007.

42. 	Sensitive	period	for	second-language	learning:
Flege,	Munro,	and	MacKay,	1995;	Hartshorne,
Tenenbaum,	and	Pinker,	2018;	Johnson	and
Newport,	1989;	Weber-Fox	and	Neville,	1996.

43. 	Sharp	decline	in	the	speed	of	second-language
grammar	learning	around	seventeen	years	of
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people):	Hartshorne	et	al.,	2018.

44. 	Sensitive	period	for	language	learning	in	deaf
people	with	a	cochlear	implant:	Friedmann
and	Rusou,	2015.

45. 	Biological	mechanisms	for	the	opening	and
closing	of	sensitive	periods:	Caroni,	Donato,
and	Muller,	2012;	Friedmann	and	Rusou,	2015;
Werker	and	Hensch,	2014.

46. 	Restoring	brain	plasticity:	Krause	et	al.,	2017.

47. 	Reorganization	of	language	areas	in	adopted
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recognition:	when	adopted	in	a	Western
country	before	the	age	of	nine,	Korean
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own	race	(Sangrigoli,	Pallier,	Argenti,
Ventureyra,	and	de	Schonen,	2005).

48. 	Dormant	trace	of	the	first	language	in	adopted
children:	Pierce,	Klein,	Chen,	Delcenserie,	and
Genesee,	2014.

49. 	Dormant	connections	in	owls:	Knudsen	and
Knudsen,	1990;	Knudsen,	Zheng,	and	DeBello,
2000.

50. 	Age-of-acquisition	effect	in	word	processing:
Ellis	and	Lambon	Ralph,	2000;	Gerhand	and
Barry,	1999;	Morrison	and	Ellis,	1995.

51. 	Bucharest	Early	Intervention	Project:	Almas	et
al.,	2012;	Berens	and	Nelson,	2015;	Nelson	et
al.,	2007;	Sheridan,	Fox,	Zeanah,	McLaughlin,
and	Nelson,	2012;	Windsor,	Moraru,	Nelson,
Fox,	and	Zeanah,	2013.

52. 	Ethics	of	the	Bucharest	project:	Millum	and
Emanuel,	2007.

CHAPTER	6:	RECYCLE	YOUR	BRAIN

1. 	Nabokov,	1962.
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Kolinsky	et	al.,	2011;	Kolinsky,	Morais,
Content,	and	Cary,	1987;	Szwed,	Ventura,
Querido,	Cohen,	and	Dehaene,	2012.
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face:	Ventura	et	al.,	2013.
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Dehaene,	2003;	Dehaene	et	al.,	2008;	Siegler
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9. 	Neuronal	recycling	hypothesis:	Dehaene,	2005,
2014;	Dehaene	and	Cohen,	2007.

10. 	Evolution	by	duplication	of	brain	circuits:
Chakraborty	and	Jarvis,	2015;	Fukuchi-
Shimogori	and	Grove,	2001.
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Galgali	and	Mante,	2018;	Golub	et	al.,	2018;
Sadtler	et	al.,	2014.
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Chafee,	2013;	Fitzgerald	et	al.,	2013.

13. 	Role	of	parietal	cortex	in	the	comparison	of
social	status:	Chiao,	2010.
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Yoon	et	al.,	2013.
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by	grid	cells:	Constantinescu,	O’Reilly,	and
Behrens,	2016.
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Musso	et	al.,	2003;	Nelson	et	al.,	2017;	Pallier
et	al.,	2011.

17. 	The	number	sense:	Dehaene,	2011.

18. 	Number	neurons	in	untrained	animals:	Ditz	and
Nieder,	2015;	Viswanathan	and	Nieder,	2013.

19. 	Effect	of	training	on	number	neurons:
Viswanathan	and	Nieder,	2015.



20. 	Acquisition	of	Arabic	numerals	in	monkeys:
Diester	and	Nieder,	2007.
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Thirion,	Hubbard,	Michel,	and	Dehaene,	2009;
Knops,	Viarouge,	and	Dehaene,	2009.
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Amalric	and	Dehaene,	2016,	2017.

23. 	Brain	imaging	of	number	processing	in	babies:
Izard	et	al.,	2008.
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Cantlon,	Brannon,	Carter,	and	Pelphrey,	2006.
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25. 	Blind	mathematicians:	Amalric,	Denghien,	and
Dehaene,	2017.

26. 	Recycling	of	occipital	cortex	for	math	in	the
blind:	Amalric,	Denghien,	et	al.,	2017;	Kanjlia,
Lane,	Feigenson,	and	Bedny,	2016.

27. 	Language	processing	in	the	occipital	cortex	of
the	blind:	Amedi,	Raz,	Pianka,	Malach,	and



Zohary,	2003;	Bedny,	Pascual-Leone,	Dodell-
Feder,	Fedorenko,	and	Saxe,	2011;	Lane,
Kanjlia,	Omaki,	and	Bedny,	2015;	Sabbah	et
al.,	2016.
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Bedny,	2017;	Hannagan,	Amedi,	Cohen,
Dehaene-Lambertz,	and	Dehaene,	2015.

29. 	Retinotopic	maps	in	the	blind:	Bock	et	al.,
2015.

30. 	Recycling	of	visual	cortex	in	the	blind:	Abboud,
Maidenbaum,	Dehaene,	and	Amedi,	2015;
Amedi	et	al.,	2003;	Bedny	et	al.,	2011;	Mahon,
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Bouhali	et	al.,	2014;	Hannagan	et	al.,	2015;
Saygin	et	al.,	2012,	2013,	2016.
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1972;	Pinheiro-Chagas,	Dotan,	Piazza,	and
Dehaene,	2017.

35. 	Mental	representation	of	prices:	Dehaene	and
Marques,	2002;	Marques	and	Dehaene,	2004.
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2016.
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2014.

43. 	Literacy	competes	with	face	processing	the	left
hemisphere:	Dehaene	et	al.,	2010;	Pegado,
Comerlato,	et	al.,	2014.

44. 	Development	of	reading	and	face	recognition:
Dehaene-Lambertz,	Monzalvo,	and	Dehaene,
2018;	Dundas,	Plaut,	and	Behrmann,	2013;	Li
et	al.,	2013;	Monzalvo,	Fluss,	Billard,	Dehaene,
and	Dehaene-Lambertz,	2012.

45. 	Insufficient	activity	evoked	by	words	and	faces
in	dyslexic	children:	Monzalvo	et	al.,	2012.

46. 	Universal	marker	of	reading	difficulties:	Rueckl
et	al.,	2015.

47. 	Competition	between	words	and	faces—
knockout	or	blocking?:	Dehaene-Lambertz	et
al.,	2018.

48. 	Learning	to	read	in	adulthood:	Braga	et	al.,
2017;	Cohen,	Dehaene,	McCormick,	Durant,
and	Zanker,	2016.

49. 	Displacement	of	the	visual	word	form	area	in
musicians:	Mongelli	et	al.,	2017.



50. 	Reduced	response	to	faces	in	mathematicians:
Amalric	and	Dehaene,	2016.

51. 	Numerous	long-term	effects	of	early	education:
see	the	Abecedarian	program	(Campbell	et	al.,
2012,	2014;	Martin,	Ramey,	and	Ramey,	1990),
the	Perry	preschool	program	(Heckman,	Moon,
Pinto,	Savelyev,	and	Yavitz,	2010;	Schweinhart,
1993),	and	the	Jamaican	Study	(Gertler	et	al.,
2014;	Grantham-McGregor,	Powell,	Walker,
and	Himes,	1991;	Walker,	Chang,	Powell,	and
Grantham-McGregor,	2005).

52. 	Child-directed	speech	and	vocabulary	growth:
Shneidman,	Arroyo,	Levine,	and	Goldin-
Meadow,	2013;	Shneidman	and	Goldin-
Meadow,	2012.

53. 	Increased	response	to	speech	following	parent-
child	story	reading:	Hutton	et	al.,	2015,	2017;
see	also	Romeo	et	al.,	2018.

54. 	Advantages	of	early	bilingualism:	Bialystok,
Craik,	Green,	and	Gollan,	2009;	Costa	and
Sebastián-Gallés,	2014;	Li,	Legault,	and
Litcofsky,	2014.

55. 	Benefits	of	an	enriched	environment:	Donato,
Rompani,	and	Caroni,	2013;	Knudsen	et	al.,
2000;	van	Praag,	Kempermann,	and	Gage,
2000;	Voss	et	al.,	2013;	Zhu	et	al.,	2014.



CHAPTER	7:	ATTENTION

1. 	Attention	in	mice:	Wang	and	Krauzlis,	2018.

2. 	Attention	in	artificial	neural	networks:
Bahdanau,	Cho,	and	Bengio,	2014;	Cho,
Courville,	and	Bengio,	2015.

3. 	Attention	in	an	artificial	neural	network	learning
to	caption	pictures	(figure	on	page	149):	Xu	et
al.,	2015.

4. 	Inattention	strongly	reduces	learning:	Ahissar
and	Hochstein,	1993.

5. 	Reduced	learning	in	the	absence	of	attention
and	consciousness:	Seitz,	Lefebvre,	Watanabe,
and	Jolicoeur,	2005;	Watanabe,	Nanez,	and
Sasaki,	2001.

6. 	Prefrontal	ignition	and	access	to	consciousness:
Dehaene	and	Changeux,	2011;	van	Vugt	et	al.,
2018.

7. 	Acetylcholine,	dopamine,	brain	plasticity,	and
alteration	of	cortical	maps:	Bao,	Chan,	and
Merzenich,	2001;	Froemke,	Merzenich,	and
Schreiner,	2007;	Kilgard	and	Merzenich,	1998.

8. 	Balance	between	inhibition	and	excitation,	and
reopening	of	brain	plasticity:	Werker	and
Hensch,	2014.



9. 	Activation	of	reward	and	alerting	circuits	by
video	games:	Koepp	et	al.,	1998.

10. 	Positive	effects	of	video	game	training:	Bavelier
et	al.,	2011;	Cardoso-Leite	and	Bavelier,	2014;
Green	and	Bavelier,	2003.

11. 	Cognitive	training	using	video	games:	see	our
math	software	at	www.thenumberrace.com
and	www.thenumbercatcher.com;	for	reading
acquisition,	visit	grapholearn.fr.

12. 	Spatial	attention	orienting:	Posner,	1994.

13. 	Amplification	by	attention:	Çukur,	Nishimoto,
Huth,	and	Gallant,	2013;	Desimone	and
Duncan,	1995;	Kastner	and	Ungerleider,	2000.

14. 	Inattentional	blindness:	Mack	and	Rock,	1998;
Simons	and	Chabris,	1999.

15. 	Attentional	blink:	Marois	and	Ivanoff,	2005;
Sergent,	Baillet,	and	Dehaene,	2005.

16. 	Unattended	items	induce	little	or	no	learning:
Leong,	Radulescu,	Daniel,	DeWoskin,	and	Niv,
2017.

17. 	Adult	experiment	on	attention	to	letters	versus
whole	words:	Yoncheva,	Blau,	Maurer,	and
McCandliss,	2010.

18. 	Educational	studies	of	phonics	versus	whole-
word	reading:	Castles,	Rastle,	and	Nation,

http://www.thenumberrace.com
http://www.thenumbercatcher.com
http://grapholearn.fr


2018;	Ehri,	Nunes,	Stahl,	and	Willows,	2001;
National	Institute	of	Child	Health	and	Human
Development,	2000;	see	also	Dehaene,	2009.

19. 	Organization	of	executive	control	in	prefrontal
cortex:	D’Esposito	and	Grossman,	1996;
Koechlin,	Ody,	and	Kouneiher,	2003;	Rouault
and	Koechlin,	2018.

20. 	Prefrontal	expansion	in	the	human	species:
Elston,	2003;	Sakai	et	al.,	2011;	Schoenemann,
Sheehan,	and	Glotzer,	2005;	Smaers,	Gómez-
Robles,	Parks,	and	Sherwood,	2017.

21. 	Prefrontal	hierarchy	and	metacognitive	control:
Fleming,	Weil,	Nagy,	Dolan,	and	Rees,	2010;
Koechlin	et	al.,	2003;	Rouault	and	Koechlin,
2018.

22. 	Global	neuronal	workspace:	Dehaene	and
Changeux,	2011;	Dehaene,	Changeux,
Naccache,	Sackur,	and	Sergent,	2006;
Dehaene,	Kerszberg,	and	Changeux,	1998;
Dehaene	and	Naccache,	2001.

23. 	Central	bottleneck:	Chun	and	Marois,	2002;
Marti,	King,	and	Dehaene,	2015;	Marti,
Sigman,	and	Dehaene,	2012;	Sigman	and
Dehaene,	2008.

24. 	Unawareness	of	the	dual-task	delay:	Corallo,
Sackur,	Dehaene,	and	Sigman,	2008;	Marti	et



al.,	2012.

25. 	Debate	on	the	ability	to	split	attention	and
execute	two	tasks	in	parallel:	Tombu	and
Jolicoeur,	2004.

26. 	An	exceedingly	decorated	classroom	distracts
pupils:	Fisher,	Godwin,	and	Seltman,	2014.

27. 	Use	of	electronic	devices	in	class	reduces	exam
performance:	Glass	and	Kang,	2018.

28. 	A-not-B	error	and	development	of	prefrontal
cortex:	Diamond	and	Doar,	1989;	Diamond
and	Goldman-Rakic,	1989.

29. 	Development	of	executive	control	and	number
perception:	Borst,	Poirel,	Pineau,	Cassotti,	and
Houdé,	2013;	Piazza,	De	Feo,	Panzeri,	and
Dehaene,	2018;	Poirel	et	al.,	2012.

30. 	Effect	of	number	training	on	prefrontal	cortex:
Viswanathan	and	Nieder,	2015.

31. 	Role	of	executive	control	in	cognitive	and
emotional	development:	Houdé	et	al.,	2000;
Isingrini,	Perrotin,	and	Souchay,	2008;	Posner
and	Rothbart,	1998;	Sheese,	Rothbart,	Posner,
White,	and	Fraundorf,	2008;	Siegler,	1989.

32. 	Effects	of	training	on	executive	control	and
working	memory:	Diamond	and	Lee,	2011;
Habibi,	Damasio,	Ilari,	Elliott	Sachs,	and



Damasio,	2018;	Jaeggi,	Buschkuehl,	Jonides,
and	Shah,	2011;	Klingberg,	2010;	Moreno	et
al.,	2011;	Olesen,	Westerberg,	and	Klingberg,
2004;	Rueda,	Rothbart,	McCandliss,
Saccomanno,	and	Posner,	2005.

33. 	Randomized	studies	of	Montessori	pedagogy:
Lillard	and	Else-Quest,	2006;	Marshall,	2017.

34. 	Effects	of	musical	training	on	the	brain:
Bermudez,	Lerch,	Evans,	and	Zatorre,	2009;
James	et	al.,	2014;	Moreno	et	al.,	2011.

35. 	Relation	between	executive	control,	prefrontal
cortex,	and	intelligence:	Duncan,	2003,	2010,
2013.

36. 	Training	effects	on	fluid	intelligence:	Au	et	al.,
2015.

37. 	Impact	of	adoption	on	IQ:	Duyme,	Dumaret,
and	Tomkiewicz,	1999.

38. 	Impact	of	education	on	IQ:	Ritchie	and	Tucker-
Drob,	2018.

39. 	Effects	of	cognitive	training	on	concentration,
reading,	and	arithmetic:	Bergman-Nutley	and
Klingberg,	2014;	Blair	and	Raver,	2014;
Klingberg,	2010;	Spencer-Smith	and
Klingberg,	2015.



40. 	Correlation	between	working	memory	and
subsequent	math	scores:	Dumontheil	and
Klingberg,	2011;	Gathercole,	Pickering,
Knight,	and	Stegmann,	2004;	Geary,	2011.

41. 	Joint	training	of	working	memory	and	the
number	line:	Nemmi	et	al.,	2016.

42. 	Learning	Chinese	with	a	nanny,	but	not	with	a
video:	Kuhl,	Tsao,	and	Liu,	2003.

43. 	Shared	attention	and	the	pedagogical	stance:
Csibra	and	Gergely,	2009;	Egyed,	Király,	and
Gergely,	2013.

44. 	Object	pointing	and	memory	of	object’s
identity:	Yoon,	Johnson,	and	Csibra,	2008.

45. 	Pseudo-teaching	in	meerkats:	Thornton	and
McAuliffe,	2006.

46. 	Intelligent	versus	slavish	copying	of	actions	by
fourteen-month-olds:	Gergely	et	al.,	2002.

47. 	Social	conformism	in	perception:	see,	for
instance,	Bond	and	Smith,	1996.

CHAPTER	8:	ACTIVE	ENGAGEMENT

1. 	Classic	experiment	comparing	active	and
passive	kittens:	Held	and	Hein,	1963.

2. 	Statistical	learning	of	syllables	and	words:	Hay
et	al.,	2011;	Saffran	et	al.,	1996;	see	also



ongoing	research	in	G.	Dehaene-Lambertz’s
lab	on	learning	in	sleeping	neonates.

3. 	Effect	of	word	processing	depth	on	explicit
memory:	Craik	and	Tulving,	1975;	Jacoby	and
Dallas,	1981.

4. 	Memory	for	sentences:	Auble	and	Franks,
1978;	Auble,	Franks,	and	Soraci,	1979.

5. 	“Making	learning	conditions	more	difficult	…”:
Zaromb,	Karpicke,	and	Roediger,	2010.

6. 	Brain	imaging	of	the	effect	of	word	processing
depth	on	memory:	Kapur	et	al.,	1994.

7. 	The	activation	of	prefrontal-hippocampal	loops
during	incidental	learning	predicts	subsequent
memory:	Brewer,	Zhao,	Desmond,	Glover,	and
Gabrieli,	1998;	Paller,	McCarthy,	and	Wood,
1988;	Sederberg	et	al.,	2006;	Sederberg,
Kahana,	Howard,	Donner,	and	Madsen,	2003;
Wagner	et	al.,	1998.

8. 	Memory	for	conscious	and	unconscious	words:
Dehaene	et	al.,	2001.

9. 	Active	learning	of	physics	concepts:	Kontra,
Goldin-Meadow,	and	Beilock,	2012;	Kontra,
Lyons,	Fischer,	and	Beilock,	2015.

10. 	Comparison	of	traditional	lecturing	versus
active	learning:	Freeman	et	al.,	2014.



11. 	Failure	of	discovery	learning	and	related
pedagogical	strategies:	Hattie,	2017;
Kirschner,	Sweller,	and	Clark,	2006;	Kirschner
and	van	Merriënboer,	2013;	Mayer,	2004.

12. 	To	add	all	numbers	from	1	to	100,	pair	1	with
100,	2	with	99,	3	with	98,	and	so	forth.	Each	of
these	pairs	adds	up	to	101,	and	there	are	fifty
of	them,	hence	the	total	is	5050.

13. 	Instructional	guidance	rather	than	pure
discovery:	Mayer,	2004.

14. 	Urban	legends	in	education:	Kirschner	and	van
Merriënboer,	2013.

15. 	The	myth	of	learning	styles:	Pashler,	McDaniel,
Rohrer,	and	Bjork,	2008.

16. 	Variations	in	amount	of	reading	in	first	grade:
Anderson,	Wilson,	and	Fielding,	1988.

17. 	Early	childhood	curiosity	and	academic
achievement:	Shah,	Weeks,	Richards,	and
Kaciroti,	2018.

18. 	Dopaminergic	neurons	sensitive	to	new
information:	Bromberg-Martin	and	Hikosaka,
2009.

19. 	Novelty	seeking	in	rats:	Bevins,	2001.

20. 	Brain	imaging	of	curiosity:	Gruber,	Gelman,
and	Ranganath,	2014;	see	also	Kang	et	al.,



2009.

21. 	Laughter	as	an	epistemic	emotion	unique	to
humans:	Hurley,	Dennett,	and	Adams,	2011.

22. 	Laughter	and	learning:	Esseily,	Rat-Fischer,
Somogyi,	O’Regan,	and	Fagard,	2016.

23. 	Review	of	psychological	theories	of	curiosity:
Loewenstein,	1994.

24. 	Inverted-U	curve	of	curiosity:	Kang	et	al.,	2009;
Kidd,	Piantadosi,	and	Aslin,	2012,	2014;
Loewenstein,	1994.

25. 	Curiosity	in	a	robot:	Gottlieb,	Oudeyer,	Lopes,
and	Baranes,	2013;	Kaplan	and	Oudeyer,
2007.

26. 	Goldilocks	effect	in	eight-month-olds:	Kidd	et
al.,	2012,	2014.

27. 	Metacognition	in	young	children:	Dehaene	et
al.,	2017;	Goupil,	Romand-Monnier,	and
Kouider,	2016;	Lyons	and	Ghetti,	2011.

28. 	Gender	and	race	stereotypes	in	mathematics:
Spencer,	Steele,	and	Quinn,	1999;	Steele	and
Aronson,	1995.

29. 	Stress,	anxiety,	learned	helplessness,	and	the
inability	to	learn:	Caroni	et	al.,	2012;	Donato	et
al.,	2013;	Kim	and	Diamond,	2002;	Noble,
Norman,	and	Farah,	2005.



30. 	Explicit	teaching	may	kill	curiosity:	Bonawitz	et
al.,	2011.

CHAPTER	9:	ERROR	FEEDBACK

1. 	Grothendieck,	1986.

2. 	John	Hattie’s	meta-analysis	grants	feedback	an
effect	size	of	0.73	standard	deviations,	which
makes	it	one	of	the	most	powerful	modulators
of	learning	(Hattie,	2008).

3. 	Rescorla-Wagner	learning	rule:	Rescorla	and
Wagner,	1972.

4. 	For	a	detailed	criticism	of	associative	learning,
see	Balsam	and	Gallistel,	2009;	Gallistel,	1990.

5. 	Blocking	of	animal	conditioning:	Beckers,
Miller,	De	Houwer,	and	Urushihara,	2006;
Fanselow,	1998;	Waelti,	Dickinson,	and
Schultz,	2001.

6. 	Surprise	enhances	infants’	learning	and
exploration:	Stahl	and	Feigenson,	2015.

7. 	Error	signals	in	the	brain:	Friston,	2005;
Naatanen,	Paavilainen,	Rinne,	and	Alho,	2007;
Schultz,	Dayan,	and	Montague,	1997.

8. 	Surprise	reflects	the	violation	of	a	prediction:
Strauss	et	al.,	2015;	Todorovic	and	de	Lange,
2012.



9. 	Hierarchy	of	local	and	global	error	signals:
Bekinschtein	et	al.,	2009;	Strauss	et	al.,	2015;
Uhrig,	Dehaene,	and	Jarraya,	2014;	Wang	et
al.,	2015.

10. 	Surprise	due	to	an	unexpected	picture:	Meyer
and	Olson,	2011.

11. 	Surprise	due	to	a	semantic	violation:	Curran,
Tucker,	Kutas,	and	Posner,	1993;	Kutas	and
Federmeier,	2011;	Kutas	and	Hillyard,	1980.

12. 	Surprise	due	to	a	grammatical	violation:
Friederici,	2002;	Hahne	and	Friederici,	1999;
but	see	also	Steinhauer	and	Drury,	2012,	for	a
critical	discussion.

13. 	Prediction	error	in	the	dopamine	network:
Pessiglione,	Seymour,	Flandin,	Dolan,	and
Frith,	2006;	Schultz	et	al.,	1997;	Waelti	et	al.,
2001.

14. 	Importance	of	high-quality	feedback	at	school:
Hattie,	2008.

15. 	Learning	by	trial	and	error	in	adults	versus
adolescents:	Palminteri,	Kilford,	Coricelli,	and
Blakemore,	2016.

16. 	Pennac,	D.	(2017,	February	11).	Daniel	Pennac:
“J’ai	été	d’abord	et	avant	tout	professeur.”	Le
Monde.	Retrieved	from	lemonde.fr.

http://lemonde.fr


17. 	Math	anxiety	syndrome:	Ashcraft,	2002;	Lyons
and	Beilock,	2012;	Maloney	and	Beilock,	2012;
Young,	Wu,	and	Menon,	2012.

18. 	Effect	of	fear	conditioning	on	synaptic
plasticity:	Caroni	et	al.,	2012;	Donato	et	al.,
2013.

19. 	Fixed	versus	growth	mindset:	Claro,	Paunesku,
and	Dweck,	2016;	Dweck,	2006;	Rattan,
Savani,	Chugh,	and	Dweck,	2015.	Note,
however,	that	the	size	of	these	effects,	and
therefore	their	practical	relevance	at	school,
has	been	recently	questioned:	Sisk,	Burgoyne,
Sun,	Butler,	and	Macnamara,	2018.

20. 	Massive	effect	of	retrieval	practice	on	learning:
Carrier	and	Pashler,	1992;	Karpicke	and
Roediger,	2008;	Roediger	and	Karpicke,	2006;
Szpunar,	Khan,	and	Schacter,	2013;	Zaromb
and	Roediger,	2010.	For	an	excellent	review	of
the	relative	efficacy	of	various	learning
techniques,	see	Dunlosky,	Rawson,	Marsh,
Nathan,	and	Willingham,	2013.

21. 	Making	retrospective	memory	judgments
facilitates	learning:	Robey,	Dougherty,	and
Buttaccio,	2017.

22. 	Retrieval	practice	facilitates	the	acquisition	of
foreign	vocabulary:	Carrier	and	Pashler,	1992;



Lindsey,	Shroyer,	Pashler,	and	Mozer,	2014.

23. 	Spacing	the	learning	improves	memory
retention:	Cepeda	et	al.,	2009;	Cepeda,
Pashler,	Vul,	Wixted,	and	Rohrer,	2006;	Rohrer
and	Taylor,	2006;	Schmidt	and	Bjork,	1992.

24. 	Brain	imaging	of	the	spacing	effect:	Bradley	et
al.,	2015;	Callan	and	Schweighofer,	2010.

25. 	Effect	of	progressively	increasing	the	time
between	lessons:	Kang,	Lindsey,	Mozer,	and
Pashler,	2014.

26. 	The	shuffling	of	mathematics	problems
improves	learning:	Rohrer	and	Taylor,	2006,
2007.

27. 	Feedback	improves	memory	even	on	correct
trials:	Butler,	Karpicke,	and	Roediger,	2008.

CHAPTER	10:	CONSOLIDATION

1. 	Moving	from	serial	to	parallel	reading	in	the
course	of	learning	to	read:	Zoccolotti	et	al.,
2005.

2. 	Longitudinal	brain	imaging	of	the	acquisition	of
reading:	Dehaene-Lambertz	et	al.,	2018.

3. 	Contribution	of	parietal	cortex	to	expert
reading,	only	for	degraded	words:	Cohen,



Dehaene,	Vinckier,	Jobert,	and	Montavont,
2008;	Vinckier	et	al.,	2006.

4. 	Visual	recognition	of	frequent	combinations	of
letters:	Binder,	Medler,	Westbury,	Liebenthal,
and	Buchanan,	2006;	Dehaene,	Cohen,
Sigman,	and	Vinckier,	2005;	Grainger	and
Whitney,	2004;	Vinckier	et	al.,	2007.

5. 	Tuning	of	early	visual	cortex	to	letter
perception:	Chang	et	al.,	2015;	Dehaene	et	al.,
2010;	Sigman	et	al.,	2005;	Szwed	et	al.,	2011,
2014.

6. 	Unconscious	reading:	Dehaene	et	al.,	2001,
2004.

7. 	Automatization	of	arithmetic:	Ansari	and	Dhital,
2006;	Rivera,	Reiss,	Eckert,	and	Menon,	2005.
The	hippocampus	also	seems	to	strongly
contribute	to	the	memory	for	arithmetic	facts:
Qin	et	al.,	2014.

8. 	Sleep	interrupts	the	forgetting	curve:	Jenkins
and	Dallenbach,	1924.

9. 	REM	sleep	improves	learning:	Karni,	Tanne,
Rubenstein,	Askenasy,	and	Sagi,	1994.

10. 	Sleep	and	the	consolidation	of	recent	learning:
Huber,	Ghilardi,	Massimini,	and	Tononi,	2004;
Stickgold,	2005;	Walker,	Brakefield,	Hobson,



and	Stickgold,	2003;	Walker	and	Stickgold,
2004.

11. 	Overexpression	of	the	zif-268	gene	during
sleep:	Ribeiro,	Goyal,	Mello,	and	Pavlides,
1999.

12. 	Neuronal	replay	during	the	night:	Ji	and
Wilson,	2007;	Louie	and	Wilson,	2001;	Skaggs
and	McNaughton,	1996;	Wilson	and
McNaughton,	1994.

13. 	Decoding	brain	activity	during	sleep:	Chen	and
Wilson,	2017;	Horikawa,	Tamaki,	Miyawaki,
and	Kamitani,	2013.

14. 	Theories	of	the	memory	function	of	sleep:
Diekelmann	and	Born,	2010.

15. 	Replay	during	sleep	facilitates	memory
consolidation:	Ramanathan,	Gulati,	and
Ganguly,	2015;	see	also	Norimoto	et	al.,	2018,
for	the	direct	effect	of	sleep	on	synaptic
plasticity.

16. 	Cortical	and	hippocampal	reactivation	during
sleep	in	humans:	Horikawa	et	al.,	2013;	Jiang
et	al.,	2017;	Peigneux	et	al.,	2004.

17. 	Increased	slow	wave	sleep	and	post-sleep
performance	improvement:	Huber	et	al.,	2004.



18. 	Brain	imaging	of	the	effects	of	sleep	on	motor
learning:	Walker,	Stickgold,	Alsop,	Gaab,	and
Schlaug,	2005.

19. 	Boosting	slow	oscillations	during	sleep
improves	memory:	Marshall,	Helgadóttir,
Mölle,	and	Born,	2006;	Ngo,	Martinetz,	Born,
and	Mölle,	2013.

20. 	Odors	can	bias	memory	consolidation	during
sleep:	Rasch,	Büchel,	Gais,	and	Born,	2007.

21. 	Sounds	can	bias	replay	during	sleep	and
improve	subsequent	memory:	Antony,	Gobel,
O’Hare,	Reber,	and	Paller,	2012;	Bendor	and
Wilson,	2012;	Rudoy,	Voss,	Westerberg,	and
Paller,	2009.

22. 	No	learning	of	novel	facts	during	sleep:	Bruce
et	al.,	1970;	Emmons	and	Simon,	1956.
Nevertheless,	a	very	recent	study	suggests	that
during	sleep,	we	may	be	able	to	learn	the
association	between	a	tone	and	a	smell	(Arzi	et
al.,	2012).

23. 	Gazsi,	M.	(2018,	June	8).	Philippe	Starck:	“I
couldn’t	care	less	about	my	life.”	The
Guardian,	theguardian.com.

24. 	Mathematical	insight	during	sleep:	Wagner,
Gais,	Haider,	Verleger,	and	Born,	2004.

http://theguardian.com


25. 	Sleep-wake	learning	algorithms:	Hinton,	Dayan,
Frey,	and	Neal,	1995;	Hinton,	Osindero,	and
Teh,	2006.

26. 	Hypothesis	that	the	memory	function	of	sleep
may	be	more	efficient	in	humans:	Samson	and
Nunn,	2015.

27. 	Greater	efficiency	of	sleep	in	children	than	in
adults:	Wilhelm	et	al.,	2013.

28. 	Babies	generalize	word	meanings	after
sleeping:	Friedrich,	Wilhelm,	Born,	and
Friederici,	2015;	Seehagen,	Konrad,	Herbert,
and	Schneider,	2015.

29. 	Positive	effect	of	naps	in	preschoolers:
Kurdziel,	Duclos,	and	Spencer,	2013.

30. 	Sleep	deficits	and	attention	disorders:	Avior	et
al.,	2004;	Cortese	et	al.,	2013;	Hiscock	et	al.,
2015;	Prehn-Kristensen	et	al.,	2014.

31. 	Beneficial	effects	of	delaying	school	start	times
for	adolescents:	American	Academy	of
Pediatrics,	2014;	Dunster	et	al.,	2018.

CONCLUSION:	RECONCILING	EDUCATION	WITH
NEUROSCIENCE

1. 	Artificial	intelligence	inspired	by	neuroscience
and	cognitive	science:	Hassabis,	Kumaran,



Summerfield,	and	Botvinick,	2017;	Lake	et	al.,
2017.

2. 	See	PISA	(Program	for	International	Student
Assessment,	oecd.org/pisa-fr),	TIMSS	(Trends
in	International	Mathematics	and	Science
Study),	and	PIRLS	(Progress	in	International
Reading	Literacy	Study,	timssandpirls.bc.edu).

http://oecd.org/pisa-fr
http://timssandpirls.bc.edu
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