432SM - TECHNOLOGY IN MATHEMATICS EDUCATION 2023
Schema della sezione
-
-
Ecco il link per iscriversi al Webinar.
https://indire.webex.com/webappng/sites/indire/meeting/register/5d9cc4d4c57046e49b4f0367e354ae55?ticket=4832534b000000064f95b6c9a5faae53e6ec30f3cbbf02b432baa5c290b916200513acbbdccba14c×tamp=1699979170639&RGID=rd2491479cfdac706932f065d63db89e0 -
CODICE: j02kao3
-
Matematica per la Scuola Secondaria di Primo grado
-
LINEE GUIDA File PDF
Matematica per le Scuole Secondarie di Secondo Grado
-
In addition to lecture materials, some links and papers about WeQuests and Gamification have been added. Please look at them.
-
Nestola, M. G. C. (2023). Educare alla “matematizzazione e modellizzazione” attraverso l’uso delle rappresentazioni semiotiche nella scuola media. Didattica Della Matematica. Dalla Ricerca Alle Pratiche d’aula, (13), 135 - 156.
-
-
-
Davis, Laura Louise, "A Quest for Knowledge: Mathematical Webquests for the High School Classroom" (2002). Chancellor’s Honors Program Projects.
-
Yan, L. L. L., & Matore, M. E. @ E. M. (2023). Gamification Trend in Students’ Mathematics Learning Through Systematic Literature Review. International Journal of Academic Research in Progressive Education and Development, 12(1), 433–461.
-
-
QuevedoGutiérrez, E. & ZapateraLlinares, A. (2021). Assessment of Scratch Programming Language as a Didactic Tool to Teach Functions. Educ.Sci., 11, 499
-
José Antonio Rodríguez-Martínez, José Antonio González-Calero & José Manuel Sáez-López (2020). Computational thinking and mathematics using Scratch: an experiment with sixth-grade students, Interactive Learning Environments, 28:3, pp 316-327
-
Julie M. Amador, & Terence Soule. (2015). Girls Build Excitement for Math from Scratch. Mathematics Teaching in the Middle School, 20(7), 408–415.
-
-
Bini, G., Bikner-Ahsbahs, A. & Robutti, O. (2023). “How to meme it”: reverse engineering the creative process of mathematical Internet memes. Educ Stud Math 112, 141–174
-
Giulia Bini, Ornella Robutti & Angelika Bikner-Ahsbahs (2022) Maths in the time of social media: conceptualizing the Internet phenomenon of mathematical memes, International Journal of Mathematical Education in Science and Technology, 53:6, 1257-1296
-
Bini, G. (2023). Social, Strutturale e Specializzato: tre significati per comprendere, studiare e utilizzare in classe i meme matematici. Didattica Della Matematica. Dalla Ricerca Alle Pratiche d’aula, (14), 9 - 29. https://doi.org/10.33683/ddm.23.14.1
-
Bini G. & Montagnani M. (2023), COMPRENDERE, CREARE E UTILIZZARE IN CLASSE I MEME MATEMATICI, Atti del IX Convegno Nazionale di Didattica della Fisica e della Matematica DI.FI.MA. 2019. Torino, 9-10-11 ottobre 2019 - Liceo «M. D’Azeglio», pp- 339- 346
-
Winn, W., & Bricken, W. (1992). Designing Virtual Worlds for Use in Mathematics Education: The Example of Experiential Algebra. Educational Technology, 32(12), 12–19.
-
J. W. Lai and K. H. Cheong (2022), Adoption of Virtual and Augmented Reality for Mathematics Education: A Scoping Review, IEEE Access, vol. 10, pp. 13693-13703
-
Fowler C. (2015), Virtual reality and learning: Where is the pedagogy, Br J Educ Technol, 46, pp. 412-422
-
Ahmad, N. & Junaini, S. (2020). Augmented Reality for Learning Mathematics: A Systematic Literature Review. International Journal of Emerging Technologies in Learning (iJET), 15(16), 106-122
-
Kaufmann H. & Schmalstieg D. (2003), Mathematics and geometry education with collaborative augmented reality, Computers & Graphics, vol. 27(3), pp 339-345
-
M. Takac (2020), Application of Web-based Immersive Virtual Reality in Mathematics Education," 2020 21th International Carpathian Control Conference (ICCC), High Tatras, Slovakia, pp. 1-6,
-
-
Margaret E. McIntosh (1997) Formative Assessment in Mathematics, The Clearing House, 71(2), pp. 92-96.
-
David R. Krathwohl (2002) A Revision of Bloom's Taxonomy: An Overview, Theory Into Practice, 41(4), pp. 212-218
-
Rittle-Johnson, B., Schneider, M. & Star, J.R. (2015). Not a One-Way Street: Bidirectional Relations Between Procedural and Conceptual Knowledge of Mathematics. Educ Psychol Rev 27, 587–597
-
Martínez-Arboleda, A. (2021). Ipsative assessment: measuring personal improvement. In T. Beaven & F. Rosell-Aguilar (Eds), Innovative language pedagogy report (pp. 77-82)
-
Brookhart, S. M., & McMillan, J. H. (2020). Classroom assessment and educational measurement (p. 296). Taylor & Francis.
-
Hansol Lee, Huy Q. Chung, Yu Zhang, Jamal Abedi & Mark Warschauer (2020) The Effectiveness and Features of Formative Assessment in US K-12 Education: A Systematic Review, Applied Measurement in Education, 33(2), pp. 124-140
-
Foster, C (2022). Implementing Confidence Assessment in Low-Stakes, Formative Mathematics Assessments. Int J of Sci and Math Educ 20, pp. 1411–1429
-
-
Pashler, H., McDaniel, M., Rohrer, D., & Bjork, R. (2008). Learning styles: Concepts and evidence. Psychological science in the public interest, 9(3), 105-119.
-
Pfeifer, R., & Bongard, J.C. (2006). How the body shapes the way we think - a new view on intelligence.
-
Adams N. B. (2004), Digital Intelligence Fostered by Technology, The Journal of Technology Studies, vol. XXX (2), 93-97, https://doi.org/10.21061/jots.v30i2.a.5
-
Gardner, H. (1987). The Theory of Multiple Intelligences. Annals of Dyslexia, 37, 19–35
-
Boaler, J., Chen, L., Williams, C.M., & Cordero, M. (2016). Seeing as Understanding: The Importance of Visual Mathematics for our Brain and Learning. Journal of Applied and Computational Mathematics, 5, 1-6.
-
Dehaene, S. (2020). How We Learn: The New Science of Education and the Brain. United Kingdom: Penguin Books Limited.
-
Zull J. E. (2004), The Art of Changing the Brain, Educational Leadership, Vol. 62(1), 68-72
-
-
Marjolein Dobber, Rosanne Zwart, Marijn Tanis, Bert van Oers, Literature review: The role of the teacher in inquiry-based education, Educational Research Review, Volume 22 (2017), pp 194-214,
-
Roh, Kyeong Hah, Problem-based learning in mathematics. ERIC Clearinghouse for Science Mathematics and Environmental Education. Technical Report (2003)
-
-
Çelik, Ahmet & Özdemir, Selçuk. (2020). Tinkering learning in classroom: an instructional rubric for evaluating 3D printed prototype performance. International Journal of Technology and Design Education. 30. 10.1007/s10798-019-09512-w.
-
-
Rezat, S., Fan, L. & Pepin, B. Mathematics textbooks and curriculum resources as instruments for change. ZDM Mathematics Education 53, 1189–1206 (2021)
-
-
Usiskin, Z. Electronic vs. paper textbook presentations of the various aspects of mathematics. ZDM Mathematics Education 50, 849–861 (2018)
-
-
Warren, E., Trigueros, M., Ursini, S. (2016). Research on the Learning and Teaching of Algebra. In: Gutiérrez, Á., Leder, G.C., Boero, P. (eds) The Second Handbook of Research on the Psychology of Mathematics Education. SensePublishers, Rotterdam. https://doi.org/10.1007/978-94-6300-561-6_3
-
Sonia Ursini, Il Modello 3UV: uno strumento teorico a disposizione degli insegnanti di matematica, in: QuaderniCIRD, 2 (2011), pp. 59-70.
-
-
Password: algebraic_sum
-
Vlassis, J., Demonty, I. The role of algebraic thinking in dealing with negative numbers. ZDM Mathematics Education 54, 1243–1255 (2022). https://doi.org/10.1007/s11858-022-01402-1
-
Lisa L. Lamb, Jessica Pierson Bishop, Randolph A. Philipp, Bonnie P. Schappelle, Ian Whitacre, & Mindy Lewis. (2012). Developing Symbol Sense for the Minus Sign. Mathematics Teaching in the Middle School, 18(1), 5–9. https://doi.org/10.5951/mathteacmiddscho.18.1.0005
-
Joëlle Vlassis, Making sense of the minus sign or becoming flexible in ‘negativity’, Learning and Instruction, Volume 14, Issue 5, 2004, Pages 469-484, https://doi.org/10.1016/j.learninstruc.2004.06.012.
-
-
G. Navarra (2019), Il progetto ArAl per un approccio relazionale all’insegnamento nell’area aritmetico-algebrica, Didattica della matematica. Dalla ricerca alle pratiche d'aula, v. 5, pp 70-94.
-
Siegler, R. S. (2003). Implications of cognitive science research for mathematics education. In Kilpatrick, J., Martin, W. B., & Schifter, D. E. (Eds.), A research companion to principles and standards for school mathematics (pp. 219-233)
-
-
Hilma Halme, Jake McMullen, Cristina E. Nanu, Anna Nyman, Minna M. Hannula-Sormunen, Mathematical skills of 11-year-old children born very preterm and full-term, Journal of Experimental Child Psychology, Volume 219, 105390 (2022) https://doi.org/10.1016/j.jecp.2022.105390.
-
Lestari, Nurcholif Diah Sri & Juniati, Dwi & Suwarsono, St. (2019). Integrating mathematical literacy toward mathematics teaching: the pedagogical content knowledge (PCK) of prospective math teacher in designing the learning task. IOP Conference Series: Earth and Environmental Science. 243. 012131. 10.1088/1755-1315/243/1/012131.
-
Loewenberg Ball, D., Thames, M. H., & Phelps, G. (2008). Content Knowledge for Teaching: What Makes It Special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/0022487108324554
-
-
Goos, M., Kaya, S. Understanding and promoting students’ mathematical thinking: a review of research published in ESM. Educ Stud Math 103, 7–25 (2020). https://doi.org/10.1007/s10649-019-09921-7
-
Roy D. Pea. Cognitive Technologies for Mathematics Education. A. Schoenfeld. Cognitive science and mathematics education, Hillsdale, NJ: Erlbaum, pp.89-122, (1987).
-
-
Koehler, M. J., & Mishra, P. (2009). What is technological pedagogical content knowledge? Contemporary Issues in Technology and Teacher Education, 9(1), 60-70
-
Tabach, M., Trgalová, J. (2019). The Knowledge and Skills that Mathematics Teachers Need for ICT Integration: The Issue of Standards. In: Aldon, G., Trgalová, J. (eds) Technology in Mathematics Teaching. Mathematics Education in the Digital Era, vol 13. Springer, Cham.
-
Haspekian, M. (2011). The co-construction of a mathematical and a didactical instrument. In M. Pytlak, T. Rowland, & E. Swoboda (Eds.) Proceedings of the 7th Congress of the European Society for Research in Mathematics Education (CERME7) (pp. 2298–2307). Rzeszów: University of Rzeszów.
-
Loewenberg Ball, D., Thames, M. H., & Phelps, G. (2008). Content Knowledge for Teaching: What Makes It Special? Journal of Teacher Education, 59(5), 389–407. https://doi.org/10.1177/0022487108324554
-
UNESCO. (2011). ICT competency framework for teachers. Paris: United Nations Educational, Scientific and Cultural Organization and Microsoft. Retrieved December 14, 2017
-
Niess, M. L., Ronau, R. N., Shafer, K. G., Driskell, S. O., Harper S. R., Johnston, C., Browning, C., Özgün-Koca, S. A., & Kersaint, G. (2009). Mathematics teacher TPACK standards and development model. Contemporary Issues in Technology and Teacher Education, 9(1), 4-24.