Topic outline

  • Sito in costruzione

    Aggiornate la pagina per vedere eventuali aggiornamenti e novità.

    Il corso manterrà un programma analogo a quello dell'anno precedente.


    • Appelli d'esame

      Qui saranno inserite le date degli appelli

      SCRITTI

      ...

      ORALI

      ...




      • Programma del corso e testi consigliati


        1. Equazioni differenziali ordinarie
        Problema di Cauchy ed equazione integrale equivalente. Teorema di esistenza locale in ipotesi di Lipschitz. Cenni ai teoremi di esistenza globale. Risoluzione di equazioni lineari e a variabili separabili. Stabilità dei punti di equilibrio. Studio qualitativo nello spazio delle fasi. Il fenomeno della risonanza.

        2. Integrale di Riemann per funzioni di più variabili
        Integrale su un rettangolo: definizione e proprietà elementari. La formula di riduzione. Integrale su domini più generali. La misura di Peano-Jordan. Formula di cambiamento di variabili nell'integrale. Coordinate polari, cilindriche, sferiche. Integrale di funzioni non limitate o definite su insiemi non limitati.

        3. Integrale di funzioni scalari su una M-superficie
        Parametrizzazioni e M-superfici. Integrale di una funzione scalare su una M-superficie. Lunghezza di una curva, area di una superficie.

        4. Integrale di forme differenziali su una M-superficie
        Definizione di M-forma differenziale. Componenti di una forma differenziale e campo di vettori associato. Prodotto esterno, differenziale esterno. Rotore e divergenza di un campo di vettori. Integrale di una M-forma differenziale su una M-superficie. Integrale di linea, di superficie (flusso) e di volume. Incollamenti, bordo orientato di un rettangolo e di una M-superficie. La formula di Gauss e il teorema di Stokes-Cartan. Formule di Stokes-Ampère, Gauss-Ostrogradski e Gauss-Green. La formula di Stokes-Cartan sulle varietà differenziabili (cenni). Forme differenziali chiuse ed esatte: il teorema di Poincaré.


              TESTI CONSIGLIATI:

        • A. Fonda, "Lezioni sulla teoria dell'integrale", Ed. Goliardica, Trieste, 2001.
        • C. Pagani e S. Salsa, "Analisi matematica, volume 2", Ed. Masson, Milano, 1993.
        • G. Prodi, "Lezioni di analisi matematica II", Ed. ETS, Pisa, 1970
        • M. Spivak, "Calculus on manifolds", Ed. Benjamin, Amsterdam, 1965.
        • G. Catino, F. Punzo, Esercizi svolti di Analisi Matematica e Geometria 2, Esculapio, 2021.

        Su suggerimento della biblioteca segnalo i seguenti libri in formato elettronico disponibili

        *Lezioni di analisi matematica due

        https://www.biblio.units.it/SebinaOpac/resource/TSA3501243

        *Analisi matematica 1

        https://www.biblio.units.it/SebinaOpac/resource/TSA3679710

        *Analisi matematica 2

        https://www.biblio.units.it/SebinaOpac/resource/TSA3679711

        *Analisi matematica 2

        https://www.biblio.units.it/SebinaOpac/resource/TSA3679841



        • Regolamento d'esame

          L’esame è costituito da una prova scritta e una prova orale.

          Per accedere alla prova orale lo studente deve prima aver superato la prova scritta.

          La prova scritta consiste nello svolgimento di alcuni esercizi e ha solitamente una durata di due ore. Durante la prova scritta lo studente non può consultare gli appunti o i testi in relazione al corso. Non può utilizzare calcolatrici o altri apparecchi elettronici in genere. Durante lo svolgimento della prova scritta non è concesso di uscire e rientrare dall’aula, tranne che in casi eccezionali. È possibile uscire una volta consegnato il compito, avendo cura di non disturbare chi sta ancora lavorando.

          È possibile ritirarsi dalla prova scritta (dopo che siano trascorsi almeno 90 minuti dal suo inizio), senza dover quindi consegnare il compito all’insegnante. È possibile presentarsi alle prove scritte in tutte le sessioni, senza limitazioni sul numero di volte nella medesima sessione. Se alla fine di una prova scritta lo studente decide di consegnare il suo compito, automaticamente verranno cestinati gli eventuali suoi compiti già consegnati in prove scritte precedenti. 

          La prova scritta si intende superata con un punteggio maggiore o uguale a 15.

          È possibile presentarsi alla prova orale in un qualunque appello della sessione, dopo di che la prova scritta non avrà più valore e dovrà essere sostenuta nuovamente.

          La prova orale consiste in una verifica delle conoscenze acquisite dallo studente riguardanti la teoria e gli esercizi svolti durante le lezioni, nonché nella revisione della prova scritta. È contemplato che una parte della verifica sulla teoria venga svolta per iscritto dallo studente, a giudizio del docente.

          È possibile ritirarsi dalla prova orale in qualsiasi momento lo studente ritenga opportuno. In tal caso, la prova scritta verrà preservata per un’eventuale altra prova orale, sempre nei limiti sopra specificati.

          Se lo studente porta a termine la prova orale, i membri della Commissione d’esame si consultano e decidono il voto finale sulla base del giudizio globale acquisito, tenendo conto sia della prova scritta che della prova orale, senza necessariamente fare la media dei voti ottenuti nelle singole prove. Il voto finale è insindacabile e viene trascritto sul Registro d’esame, nonché sul Libretto dello studente.

          • PDFs

            Qui di seguito alcuni interessanti pdf.

          • Appunti da altri corsi

            • ODE File documento PDF
          • Appunti aggiuntivi alternativi

            • Tutorato

              Il tutorato si tiene il lunedì dalle 14 alle 16 in aula TB Fisica Tecnica ed. C5.

              Ad eccezione di: 

              Il giorno 6 novembre, giorno in cui il tutorato si tiene dalle 16 alle 18 in aula 5A edificio H2bis.

              il giorno lunedì 20 novembre non si svolge il tutorato.

              I giorni lunedì 27 novembre e lunedì 4 dicembre il tutorato durerà 3 ore (dalle 14 alle 17) in aula TB Fisica Tecnica ed. C5.

              • Topic 9

                • Topic 10